Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 5,712 Bytes
89be9f9 5fc4e72 1ef81e0 89be9f9 1ef81e0 eac7d3f 89be9f9 59874d6 89be9f9 457a981 eac7d3f 89be9f9 eac7d3f 34274e5 eac7d3f 34274e5 eac7d3f 457a981 34274e5 eac7d3f 457a981 eac7d3f 457a981 34274e5 457a981 89be9f9 814d067 34274e5 59874d6 457a981 814d067 457a981 1ef81e0 814d067 1ef81e0 5fc4e72 1ef81e0 814d067 1ef81e0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 |
import os
import gzip
import numpy as np
import pandas as pd
import tensorflow as tf
from Bio import SeqIO
GUIDE_LEN = 23
CONTEXT_5P = 3
CONTEXT_3P = 0
TARGET_LEN = CONTEXT_5P + GUIDE_LEN + CONTEXT_3P
NUCLEOTIDE_TOKENS = dict(zip(['A', 'C', 'G', 'T'], [0, 1, 2, 3]))
NUCLEOTIDE_COMPLEMENT = dict(zip(['A', 'C', 'G', 'T'], ['T', 'G', 'C', 'A']))
NUM_TOP_GUIDES = 10
NUM_MISMATCHES = 3
def sequence_complement(sequence: list):
return [''.join([NUCLEOTIDE_COMPLEMENT[nt] for nt in list(seq)]) for seq in sequence]
def one_hot_encode_sequence(sequence: list, add_context_padding: bool = False):
# stack list of sequences into a tensor
sequence = tf.ragged.stack([tf.constant(list(seq)) for seq in sequence], axis=0)
# tokenize sequence
nucleotide_table = tf.lookup.StaticVocabularyTable(
initializer=tf.lookup.KeyValueTensorInitializer(
keys=tf.constant(list(NUCLEOTIDE_TOKENS.keys()), dtype=tf.string),
values=tf.constant(list(NUCLEOTIDE_TOKENS.values()), dtype=tf.int64)),
num_oov_buckets=1)
sequence = tf.RaggedTensor.from_row_splits(values=nucleotide_table.lookup(sequence.values),
row_splits=sequence.row_splits).to_tensor(255)
# add context padding if requested
if add_context_padding:
pad_5p = 255 * tf.ones([sequence.shape[0], CONTEXT_5P], dtype=sequence.dtype)
pad_3p = 255 * tf.ones([sequence.shape[0], CONTEXT_3P], dtype=sequence.dtype)
sequence = tf.concat([pad_5p, sequence, pad_3p], axis=1)
# one-hot encode
sequence = tf.one_hot(sequence, depth=4)
return sequence
def process_data(transcript_seq: str):
# convert to upper case
transcript_seq = transcript_seq.upper()
# get all target sites
target_seq = [transcript_seq[i: i + TARGET_LEN] for i in range(len(transcript_seq) - TARGET_LEN)]
# prepare guide sequences
guide_seq = sequence_complement([seq[CONTEXT_5P:len(seq) - CONTEXT_3P] for seq in target_seq])
# model inputs
model_inputs = tf.concat([
tf.reshape(one_hot_encode_sequence(target_seq, add_context_padding=False), [len(target_seq), -1]),
tf.reshape(one_hot_encode_sequence(guide_seq, add_context_padding=True), [len(guide_seq), -1]),
], axis=-1)
return target_seq, guide_seq, model_inputs
def tiger_predict(transcript_seq: str):
# load model
if os.path.exists('model'):
tiger = tf.keras.models.load_model('model')
else:
print('no saved model!')
exit()
# parse transcript sequence
target_seq, guide_seq, model_inputs = process_data(transcript_seq)
# get predictions
normalized_lfc = tiger.predict_step(model_inputs)
predictions = pd.DataFrame({'Guide': guide_seq, 'Normalized LFC': tf.squeeze(normalized_lfc).numpy()})
predictions = predictions.set_index('Guide').sort_values('Normalized LFC')
return predictions
def find_off_targets(guides, batch_size=1000):
with gzip.open(os.path.join('transcripts', 'gencode.v19.pc_transcripts.fa.gz'), 'rt') as file:
df_transcripts = pd.DataFrame([(t.id, str(t.seq)) for t in SeqIO.parse(file, 'fasta')], columns=['id', 'seq'])
df_transcripts['id'] = df_transcripts['id'].apply(lambda s: s.split('|')[4])
df_transcripts.set_index('id', inplace=True)
# one-hot encode guides to form a filter
guide_filter = one_hot_encode_sequence(sequence_complement(guides), add_context_padding=False)
guide_filter = tf.transpose(guide_filter, [1, 2, 0])
# loop over transcripts in batches
i = 0
print('Scanning for off-targets')
df_off_targets = pd.DataFrame()
while i < len(df_transcripts):
# select batch
df_batch = df_transcripts.iloc[i:min(i + batch_size, len(df_transcripts))]
i += batch_size
# find and log off-targets
transcripts = one_hot_encode_sequence(df_batch['seq'].values.tolist(), add_context_padding=False)
num_mismatches = GUIDE_LEN - tf.nn.conv1d(transcripts, guide_filter, stride=1, padding='SAME')
loc_off_targets = tf.where(num_mismatches <= NUM_MISMATCHES).numpy()
df_off_targets = pd.concat([df_off_targets, pd.DataFrame({
'Guide': np.array(guides)[loc_off_targets[:, 2]],
'Isoform': df_batch.index.values[loc_off_targets[:, 0]],
'Mismatches': tf.gather_nd(num_mismatches, loc_off_targets).numpy().astype(int),
'Midpoint': loc_off_targets[:, 1],
'Target': df_batch['seq'].values[loc_off_targets[:, 0]],
})])
# progress update
print('\rPercent complete: {:.2f}%'.format(100 * min(i / len(df_transcripts), 1)), end='')
print('')
# trim transcripts to targets
dict_off_targets = df_off_targets.to_dict('records')
for row in dict_off_targets:
start_location = row['Midpoint'] - (GUIDE_LEN // 2) - CONTEXT_5P
row['Target'] = row['Target'][start_location:start_location + TARGET_LEN]
if row['Mismatches'] == 0:
assert row['Guide'] == sequence_complement([row['Target'][CONTEXT_5P:TARGET_LEN-CONTEXT_3P]])[0]
df_off_targets = pd.DataFrame(dict_off_targets)
return df_off_targets
if __name__ == '__main__':
# simple test case
transcript_sequence = 'ATGCAGGACGCGGAGAACGTGGCGGTGCCCGAGGCGGCCGAGGAGCGCGC'.lower() # first 50 from EIF3B-003's CDS
sorted_predictions = tiger_predict(transcript_sequence)
# report top guides only
sorted_predictions = sorted_predictions.iloc[:NUM_TOP_GUIDES]
print(sorted_predictions)
# scan for off-targets for top guides
off_targets = find_off_targets(sorted_predictions.index.values.tolist())
print(off_targets)
|