Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 12,083 Bytes
d78d0d1 89be9f9 5fc4e72 89be9f9 1ef81e0 eac7d3f 89be9f9 59874d6 a690e02 457a981 eac7d3f d78d0d1 f311bf4 89be9f9 e38af10 a2591b6 d78d0d1 6216d88 d78d0d1 f311bf4 d78d0d1 eac7d3f 34274e5 eac7d3f 34274e5 eac7d3f 457a981 34274e5 eac7d3f f311bf4 eac7d3f 1e16292 eac7d3f 457a981 eac7d3f 457a981 89be9f9 de06d10 59874d6 457a981 814d067 f311bf4 457a981 f57c1f6 814d067 89ee386 de06d10 d78d0d1 1ef81e0 f57c1f6 1ef81e0 f57c1f6 d78d0d1 1ef81e0 f311bf4 1ef81e0 f311bf4 1ef81e0 73c24bb f311bf4 1ef81e0 9f169cd d78d0d1 1ef81e0 f57c1f6 1ef81e0 de06d10 350befe de06d10 f311bf4 de06d10 f57c1f6 de06d10 a2591b6 814d067 de06d10 f57c1f6 f311bf4 f57c1f6 f311bf4 f57c1f6 1ef81e0 f311bf4 9f169cd f311bf4 de06d10 99a0d01 a2591b6 99a0d01 a2591b6 99a0d01 4e66e6b f57c1f6 4e66e6b f57c1f6 a2591b6 f57c1f6 4e66e6b f57c1f6 89ffb34 f57c1f6 a2591b6 f57c1f6 fda1178 f57c1f6 f311bf4 a2591b6 f311bf4 0450f78 f311bf4 0450f78 f311bf4 0450f78 a2591b6 0450f78 a2591b6 f311bf4 0450f78 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 |
import argparse
import os
import gzip
import pandas as pd
import tensorflow as tf
from Bio import SeqIO
GUIDE_LEN = 23
CONTEXT_5P = 3
CONTEXT_3P = 0
TARGET_LEN = CONTEXT_5P + GUIDE_LEN + CONTEXT_3P
NUCLEOTIDE_TOKENS = dict(zip(['A', 'C', 'G', 'T', 'N'], [0, 1, 2, 3, 255]))
NUCLEOTIDE_COMPLEMENT = dict(zip(['A', 'C', 'G', 'T'], ['T', 'G', 'C', 'A']))
NUM_TOP_GUIDES = 10
NUM_MISMATCHES = 3
REFERENCE_TRANSCRIPTS = ('gencode.v19.pc_transcripts.fa.gz', 'gencode.v19.lncRNA_transcripts.fa.gz')
BATCH_SIZE_COMPUTE = 500
BATCH_SIZE_SCAN = 20
BATCH_SIZE_TRANSCRIPTS = 50
# configure GPUs
for gpu in tf.config.list_physical_devices('GPU'):
tf.config.experimental.set_memory_growth(gpu, enable=True)
if len(tf.config.list_physical_devices('GPU')) > 0:
tf.config.experimental.set_visible_devices(tf.config.list_physical_devices('GPU')[0], 'GPU')
def load_transcripts(fasta_files):
# load all transcripts from fasta files into a DataFrame
transcripts = pd.DataFrame()
for file in fasta_files:
try:
if os.path.splitext(file)[1] == '.gz':
with gzip.open(file, 'rt') as f:
df = pd.DataFrame([(t.id, str(t.seq)) for t in SeqIO.parse(f, 'fasta')], columns=['id', 'seq'])
else:
df = pd.DataFrame([(t.id, str(t.seq)) for t in SeqIO.parse(file, 'fasta')], columns=['id', 'seq'])
except Exception as e:
print(e, 'while loading', file)
continue
transcripts = pd.concat([transcripts, df])
# set index
transcripts['id'] = transcripts['id'].apply(lambda s: s.split('|')[0])
transcripts.set_index('id', inplace=True)
assert not transcripts.index.has_duplicates, "duplicate transcript ID's detected"
return transcripts
def sequence_complement(sequence: list):
return [''.join([NUCLEOTIDE_COMPLEMENT[nt] for nt in list(seq)]) for seq in sequence]
def one_hot_encode_sequence(sequence: list, add_context_padding: bool = False):
# stack list of sequences into a tensor
sequence = tf.ragged.stack([tf.constant(list(seq)) for seq in sequence], axis=0)
# tokenize sequence
nucleotide_table = tf.lookup.StaticVocabularyTable(
initializer=tf.lookup.KeyValueTensorInitializer(
keys=tf.constant(list(NUCLEOTIDE_TOKENS.keys()), dtype=tf.string),
values=tf.constant(list(NUCLEOTIDE_TOKENS.values()), dtype=tf.int64)),
num_oov_buckets=1)
sequence = tf.RaggedTensor.from_row_splits(values=nucleotide_table.lookup(sequence.values),
row_splits=sequence.row_splits).to_tensor(255)
# add context padding if requested
if add_context_padding:
pad_5p = 255 * tf.ones([sequence.shape[0], CONTEXT_5P], dtype=sequence.dtype)
pad_3p = 255 * tf.ones([sequence.shape[0], CONTEXT_3P], dtype=sequence.dtype)
sequence = tf.concat([pad_5p, sequence, pad_3p], axis=1)
# one-hot encode
sequence = tf.one_hot(sequence, depth=4, dtype=tf.float16)
return sequence
def process_data(transcript_seq: str):
# convert to upper case
transcript_seq = transcript_seq.upper()
# get all target sites
target_seq = [transcript_seq[i: i + TARGET_LEN] for i in range(len(transcript_seq) - TARGET_LEN + 1)]
# prepare guide sequences
guide_seq = sequence_complement([seq[CONTEXT_5P:len(seq) - CONTEXT_3P] for seq in target_seq])
# model inputs
model_inputs = tf.concat([
tf.reshape(one_hot_encode_sequence(target_seq, add_context_padding=False), [len(target_seq), -1]),
tf.reshape(one_hot_encode_sequence(guide_seq, add_context_padding=True), [len(guide_seq), -1]),
], axis=-1)
return target_seq, guide_seq, model_inputs
def predict_on_target(transcript_seq: str, model: tf.keras.Model):
# parse transcript sequence
target_seq, guide_seq, model_inputs = process_data(transcript_seq)
# get predictions
normalized_lfc = model.predict(model_inputs, batch_size=BATCH_SIZE_COMPUTE, verbose=False)
predictions = pd.DataFrame({'Guide': guide_seq, 'Normalized LFC': tf.squeeze(normalized_lfc).numpy()})
predictions = predictions.sort_values('Normalized LFC')
return predictions
def find_off_targets(top_guides: pd.DataFrame, status_bar, status_text):
# load reference transcripts
reference_transcripts = load_transcripts([os.path.join('transcripts', f) for f in REFERENCE_TRANSCRIPTS])
# one-hot encode guides to form a filter
guide_filter = one_hot_encode_sequence(sequence_complement(top_guides['Guide']), add_context_padding=False)
guide_filter = tf.transpose(guide_filter, [1, 2, 0])
# loop over transcripts in batches
i = 0
print('Scanning for off-targets')
off_targets = pd.DataFrame()
while i < len(reference_transcripts):
# select batch
df_batch = reference_transcripts.iloc[i:min(i + BATCH_SIZE_SCAN, len(reference_transcripts))]
i += BATCH_SIZE_SCAN
# find locations of off-targets
transcripts = one_hot_encode_sequence(df_batch['seq'].values.tolist(), add_context_padding=False)
num_mismatches = GUIDE_LEN - tf.nn.conv1d(transcripts, guide_filter, stride=1, padding='SAME')
loc_off_targets = tf.where(tf.round(num_mismatches) <= NUM_MISMATCHES).numpy()
# off-targets discovered
if len(loc_off_targets) > 0:
# log off-targets
dict_off_targets = pd.DataFrame({
'On-target ID': top_guides.iloc[loc_off_targets[:, 2]]['On-target ID'],
'Guide': top_guides.iloc[loc_off_targets[:, 2]]['Guide'],
'Off-target ID': df_batch.index.values[loc_off_targets[:, 0]],
'Target': df_batch['seq'].values[loc_off_targets[:, 0]],
'Mismatches': tf.gather_nd(num_mismatches, loc_off_targets).numpy().astype(int),
'Midpoint': loc_off_targets[:, 1],
}).to_dict('records')
# trim transcripts to targets
for row in dict_off_targets:
start_location = row['Midpoint'] - (GUIDE_LEN // 2)
if start_location < CONTEXT_5P:
row['Target'] = row['Target'][0:GUIDE_LEN + CONTEXT_3P]
row['Target'] = 'N' * (TARGET_LEN - len(row['Target'])) + row['Target']
elif start_location + GUIDE_LEN + CONTEXT_3P > len(row['Target']):
row['Target'] = row['Target'][start_location - CONTEXT_5P:]
row['Target'] = row['Target'] + 'N' * (TARGET_LEN - len(row['Target']))
else:
row['Target'] = row['Target'][start_location - CONTEXT_5P:start_location + GUIDE_LEN + CONTEXT_3P]
if row['Mismatches'] == 0 and 'N' not in row['Target']:
assert row['Guide'] == sequence_complement([row['Target'][CONTEXT_5P:TARGET_LEN - CONTEXT_3P]])[0]
# append new off-targets
off_targets = pd.concat([off_targets, pd.DataFrame(dict_off_targets)])
# progress update
if status_bar:
status_text.text("Scanning for off-targets Percent complete: {:.2f}%".format(int(100 * min(i / len(reference_transcripts), 1))))
status_bar.progress(int(100 * min(i / len(reference_transcripts), 1)))
print('\rPercent complete: {:.2f}%'.format(100 * min(i / len(reference_transcripts), 1)), end='')
print('')
return off_targets
def predict_off_target(off_targets: pd.DataFrame, model: tf.keras.Model):
if len(off_targets) == 0:
return pd.DataFrame()
# append predictions off-target predictions
model_inputs = tf.concat([
tf.reshape(one_hot_encode_sequence(off_targets['Target'], add_context_padding=False), [len(off_targets), -1]),
tf.reshape(one_hot_encode_sequence(off_targets['Guide'], add_context_padding=True), [len(off_targets), -1]),
], axis=-1)
off_targets['Normalized LFC'] = model.predict(model_inputs, batch_size=BATCH_SIZE_COMPUTE, verbose=False)
return off_targets.sort_values('Normalized LFC')
def tiger_exhibit(transcripts: pd.DataFrame, status_bar=None, status_text=None, check_off_targets=False):
# load model
if os.path.exists('model'):
tiger = tf.keras.models.load_model('model')
else:
print('no saved model!')
exit()
# find top guides for each transcript
print('Finding top guides for each transcript')
on_target_predictions = pd.DataFrame(columns=['On-target ID', 'Guide', 'Normalized LFC'])
for i, (index, row) in enumerate(transcripts.iterrows()):
df = predict_on_target(row['seq'], model=tiger)
df['On-target ID'] = index
on_target_predictions = pd.concat([on_target_predictions, df.iloc[:NUM_TOP_GUIDES]])
# progress update
if status_bar:
status_text.text("Scanning for on-targets Percent complete: {:.2f}%".format(100 * min((i + 1) / len(transcripts), 1)))
status_bar.progress(int(100 * min((i + 1) / len(transcripts), 1)))
print('\rPercent complete: {:.2f}%'.format(100 * min((i + 1) / len(transcripts), 1)), end='')
print('')
# predict off-target effects for top guides
off_target_predictions = pd.DataFrame()
if check_off_targets:
off_targets = find_off_targets(on_target_predictions, status_bar, status_text)
off_target_predictions = predict_off_target(off_targets, model=tiger)
# reverse guide sequences
on_target_predictions['Guide'] = on_target_predictions['Guide'].apply(lambda s: s[::-1])
if check_off_targets and len(off_target_predictions) > 0:
off_target_predictions['Guide'] = off_target_predictions['Guide'].apply(lambda s: s[::-1])
return on_target_predictions.reset_index(drop=True), off_target_predictions.reset_index(drop=True)
if __name__ == '__main__':
# common arguments
parser = argparse.ArgumentParser()
parser.add_argument('--check_off_targets', action='store_true', default=False)
parser.add_argument('--fasta_path', type=str, default=None)
parser.add_argument('--simple_test', action='store_true', default=False)
args = parser.parse_args()
# simple test case
if args.simple_test:
# first 50 from EIF3B-003's CDS
simple_test = pd.DataFrame(dict(id=['ManualEntry'], seq=['ATGCAGGACGCGGAGAACGTGGCGGTGCCCGAGGCGGCCGAGGAGCGCGC']))
simple_test.set_index('id', inplace=True)
df_on_target, df_off_target = tiger_exhibit(simple_test, check_off_targets=args.check_off_targets)
df_on_target.to_csv('on_target.csv')
if args.check_off_targets:
df_off_target.to_csv('off_target.csv')
# directory of fasta files
elif args.fasta_path is not None and os.path.exists(args.fasta_path):
# check for any existing results
if os.path.exists('on_target.csv') or os.path.exists('off_target.csv'):
raise FileExistsError('please rename or delete existing results')
# load transcripts
df_transcripts = load_transcripts([os.path.join(args.fasta_path, f) for f in os.listdir(args.fasta_path)])
# process in batches
batch = 0
num_batches = len(df_transcripts) // BATCH_SIZE_TRANSCRIPTS
num_batches += (len(df_transcripts) % BATCH_SIZE_TRANSCRIPTS > 0)
for idx in range(0, len(df_transcripts), BATCH_SIZE_TRANSCRIPTS):
batch += 1
print('Batch {:d} of {:d}'.format(batch, num_batches))
# run batch
idx_stop = min(idx + BATCH_SIZE_TRANSCRIPTS, len(df_transcripts))
df_on_target, df_off_target = tiger_exhibit(df_transcripts[idx:idx_stop], check_off_targets=args.check_off_targets)
# save batch results
df_on_target.to_csv('on_target.csv', header=batch == 1, index=False, mode='a')
if args.check_off_targets:
df_off_target.to_csv('off_target.csv', header=batch == 1, index=False, mode='a')
# clear session to prevent memory blow up
tf.keras.backend.clear_session()
|