tiger / tiger.py
Andrew Stirn
off-target predictions
de06d10
raw
history blame
6.42 kB
import os
import gzip
import numpy as np
import pandas as pd
import tensorflow as tf
from Bio import SeqIO
GUIDE_LEN = 23
CONTEXT_5P = 3
CONTEXT_3P = 0
TARGET_LEN = CONTEXT_5P + GUIDE_LEN + CONTEXT_3P
NUCLEOTIDE_TOKENS = dict(zip(['A', 'C', 'G', 'T'], [0, 1, 2, 3]))
NUCLEOTIDE_COMPLEMENT = dict(zip(['A', 'C', 'G', 'T'], ['T', 'G', 'C', 'A']))
NUM_TOP_GUIDES = 10
NUM_MISMATCHES = 3
def sequence_complement(sequence: list):
return [''.join([NUCLEOTIDE_COMPLEMENT[nt] for nt in list(seq)]) for seq in sequence]
def one_hot_encode_sequence(sequence: list, add_context_padding: bool = False):
# stack list of sequences into a tensor
sequence = tf.ragged.stack([tf.constant(list(seq)) for seq in sequence], axis=0)
# tokenize sequence
nucleotide_table = tf.lookup.StaticVocabularyTable(
initializer=tf.lookup.KeyValueTensorInitializer(
keys=tf.constant(list(NUCLEOTIDE_TOKENS.keys()), dtype=tf.string),
values=tf.constant(list(NUCLEOTIDE_TOKENS.values()), dtype=tf.int64)),
num_oov_buckets=1)
sequence = tf.RaggedTensor.from_row_splits(values=nucleotide_table.lookup(sequence.values),
row_splits=sequence.row_splits).to_tensor(255)
# add context padding if requested
if add_context_padding:
pad_5p = 255 * tf.ones([sequence.shape[0], CONTEXT_5P], dtype=sequence.dtype)
pad_3p = 255 * tf.ones([sequence.shape[0], CONTEXT_3P], dtype=sequence.dtype)
sequence = tf.concat([pad_5p, sequence, pad_3p], axis=1)
# one-hot encode
sequence = tf.one_hot(sequence, depth=4)
return sequence
def process_data(transcript_seq: str):
# convert to upper case
transcript_seq = transcript_seq.upper()
# get all target sites
target_seq = [transcript_seq[i: i + TARGET_LEN] for i in range(len(transcript_seq) - TARGET_LEN)]
# prepare guide sequences
guide_seq = sequence_complement([seq[CONTEXT_5P:len(seq) - CONTEXT_3P] for seq in target_seq])
# model inputs
model_inputs = tf.concat([
tf.reshape(one_hot_encode_sequence(target_seq, add_context_padding=False), [len(target_seq), -1]),
tf.reshape(one_hot_encode_sequence(guide_seq, add_context_padding=True), [len(guide_seq), -1]),
], axis=-1)
return target_seq, guide_seq, model_inputs
def predict_on_target(transcript_seq: str, model: tf.keras.Model):
# parse transcript sequence
target_seq, guide_seq, model_inputs = process_data(transcript_seq)
# get predictions
normalized_lfc = model.predict_step(model_inputs)
predictions = pd.DataFrame({'Guide': guide_seq, 'Normalized LFC': tf.squeeze(normalized_lfc).numpy()})
predictions = predictions.set_index('Guide').sort_values('Normalized LFC')
return predictions
def find_off_targets(guides, batch_size=1000):
# load reference transcripts
with gzip.open(os.path.join('transcripts', 'gencode.v19.pc_transcripts.fa.gz'), 'rt') as file:
df_transcripts = pd.DataFrame([(t.id, str(t.seq)) for t in SeqIO.parse(file, 'fasta')], columns=['id', 'seq'])
df_transcripts['id'] = df_transcripts['id'].apply(lambda s: s.split('|')[4])
df_transcripts.set_index('id', inplace=True)
# one-hot encode guides to form a filter
guide_filter = one_hot_encode_sequence(sequence_complement(guides), add_context_padding=False)
guide_filter = tf.transpose(guide_filter, [1, 2, 0])
# loop over transcripts in batches
i = 0
print('Scanning for off-targets')
df_off_targets = pd.DataFrame()
while i < len(df_transcripts):
# select batch
df_batch = df_transcripts.iloc[i:min(i + batch_size, len(df_transcripts))]
i += batch_size
# find and log off-targets
transcripts = one_hot_encode_sequence(df_batch['seq'].values.tolist(), add_context_padding=False)
num_mismatches = GUIDE_LEN - tf.nn.conv1d(transcripts, guide_filter, stride=1, padding='SAME')
loc_off_targets = tf.where(num_mismatches <= NUM_MISMATCHES).numpy()
df_off_targets = pd.concat([df_off_targets, pd.DataFrame({
'Guide': np.array(guides)[loc_off_targets[:, 2]],
'Isoform': df_batch.index.values[loc_off_targets[:, 0]],
'Mismatches': tf.gather_nd(num_mismatches, loc_off_targets).numpy().astype(int),
'Midpoint': loc_off_targets[:, 1],
'Target': df_batch['seq'].values[loc_off_targets[:, 0]],
})])
# progress update
print('\rPercent complete: {:.2f}%'.format(100 * min(i / len(df_transcripts), 1)), end='')
print('')
# trim transcripts to targets
dict_off_targets = df_off_targets.to_dict('records')
for row in dict_off_targets:
start_location = row['Midpoint'] - (GUIDE_LEN // 2) - CONTEXT_5P
row['Target'] = row['Target'][start_location:start_location + TARGET_LEN]
if row['Mismatches'] == 0:
assert row['Guide'] == sequence_complement([row['Target'][CONTEXT_5P:TARGET_LEN-CONTEXT_3P]])[0]
df_off_targets = pd.DataFrame(dict_off_targets)
return df_off_targets
def predict_off_target(off_targets: pd.DataFrame, model: tf.keras.Model):
# append predictions off-target predictions
model_inputs = tf.concat([
tf.reshape(one_hot_encode_sequence(off_targets['Target'], add_context_padding=False), [len(off_targets), -1]),
tf.reshape(one_hot_encode_sequence(off_targets['Guide'], add_context_padding=True), [len(off_targets), -1]),
], axis=-1)
off_targets['Normalized LFC'] = model.predict_step(model_inputs)
return off_targets
def tiger_exhibit(transcript):
# load model
if os.path.exists('model'):
tiger = tf.keras.models.load_model('model')
else:
print('no saved model!')
exit()
# on-target predictions
on_target_predictions = predict_on_target(transcript, model=tiger)
# keep only top guides
on_target_predictions = on_target_predictions.iloc[:NUM_TOP_GUIDES]
# predict off-target effects for top guides
off_targets = find_off_targets(on_target_predictions.index.values.tolist())
off_targets = predict_off_target(off_targets, model=tiger)
return on_target_predictions, off_targets
if __name__ == '__main__':
# simple test case
print(tiger_exhibit('ATGCAGGACGCGGAGAACGTGGCGGTGCCCGAGGCGGCCGAGGAGCGCGC'.lower())) # first 50 from EIF3B-003's CDS