tiger / app.py
Andrew Stirn
no off-target bug
350befe
raw
history blame
1.48 kB
import streamlit as st
from tiger import tiger_exhibit, TARGET_LEN, NUCLEOTIDE_TOKENS
@st.cache
def convert_df(df):
# IMPORTANT: Cache the conversion to prevent computation on every rerun
return df.to_csv().encode('utf-8')
# title and instructions
st.title('TIGER Cas13 Efficacy Prediction')
st.session_state['userInput'] = ''
st.session_state['userInput'] = st.text_input(
label='Enter a target transcript:',
# value='ATGCAGGACGCGGAGAACGTGGCGGTGCCCGAGGCGGCCGAGGAGCGCGC',
placeholder='Upper or lower case')
# input is too short
if len(st.session_state['userInput']) < TARGET_LEN:
transcript_len = len(st.session_state['userInput'])
st.write('Transcript length ({:d}) must be at least {:d} bases.'.format(transcript_len, TARGET_LEN))
# valid input
elif all([True if nt.upper() in NUCLEOTIDE_TOKENS.keys() else False for nt in st.session_state['userInput']]):
on_target, off_target = tiger_exhibit(st.session_state['userInput'])
st.write('On-target predictions: ', on_target)
st.download_button(label='Download', data=convert_df(on_target), file_name='on_target.csv', mime='text/csv')
if len(off_target) > 0:
st.write('Off-target predictions: ', off_target)
st.download_button(label='Download', data=convert_df(off_target), file_name='off_target.csv', mime='text/csv')
else:
st.write('We did not find any off-target effects!')
# invalid input
else:
st.write('Nucleotides other than ACGT detected!')