tiger / tiger.py
Andrew Stirn
minor fix
fda1178
raw
history blame
12.1 kB
import argparse
import os
import gzip
import pandas as pd
import tensorflow as tf
from Bio import SeqIO
GUIDE_LEN = 23
CONTEXT_5P = 3
CONTEXT_3P = 0
TARGET_LEN = CONTEXT_5P + GUIDE_LEN + CONTEXT_3P
NUCLEOTIDE_TOKENS = dict(zip(['A', 'C', 'G', 'T', 'N'], [0, 1, 2, 3, 255]))
NUCLEOTIDE_COMPLEMENT = dict(zip(['A', 'C', 'G', 'T'], ['T', 'G', 'C', 'A']))
NUM_TOP_GUIDES = 10
NUM_MISMATCHES = 3
REFERENCE_TRANSCRIPTS = ('gencode.v19.pc_transcripts.fa.gz', 'gencode.v19.lncRNA_transcripts.fa.gz')
BATCH_SIZE_COMPUTE = 500
BATCH_SIZE_SCAN = 20
BATCH_SIZE_TRANSCRIPTS = 50
# configure GPUs
for gpu in tf.config.list_physical_devices('GPU'):
tf.config.experimental.set_memory_growth(gpu, enable=True)
if len(tf.config.list_physical_devices('GPU')) > 0:
tf.config.experimental.set_visible_devices(tf.config.list_physical_devices('GPU')[0], 'GPU')
def load_transcripts(fasta_files):
# load all transcripts from fasta files into a DataFrame
transcripts = pd.DataFrame()
for file in fasta_files:
try:
if os.path.splitext(file)[1] == '.gz':
with gzip.open(file, 'rt') as f:
df = pd.DataFrame([(t.id, str(t.seq)) for t in SeqIO.parse(f, 'fasta')], columns=['id', 'seq'])
else:
df = pd.DataFrame([(t.id, str(t.seq)) for t in SeqIO.parse(file, 'fasta')], columns=['id', 'seq'])
except Exception as e:
print(e, 'while loading', file)
continue
transcripts = pd.concat([transcripts, df])
# set index
transcripts['id'] = transcripts['id'].apply(lambda s: s.split('|')[0])
transcripts.set_index('id', inplace=True)
assert not transcripts.index.has_duplicates, "duplicate transcript ID's detected"
return transcripts
def sequence_complement(sequence: list):
return [''.join([NUCLEOTIDE_COMPLEMENT[nt] for nt in list(seq)]) for seq in sequence]
def one_hot_encode_sequence(sequence: list, add_context_padding: bool = False):
# stack list of sequences into a tensor
sequence = tf.ragged.stack([tf.constant(list(seq)) for seq in sequence], axis=0)
# tokenize sequence
nucleotide_table = tf.lookup.StaticVocabularyTable(
initializer=tf.lookup.KeyValueTensorInitializer(
keys=tf.constant(list(NUCLEOTIDE_TOKENS.keys()), dtype=tf.string),
values=tf.constant(list(NUCLEOTIDE_TOKENS.values()), dtype=tf.int64)),
num_oov_buckets=1)
sequence = tf.RaggedTensor.from_row_splits(values=nucleotide_table.lookup(sequence.values),
row_splits=sequence.row_splits).to_tensor(255)
# add context padding if requested
if add_context_padding:
pad_5p = 255 * tf.ones([sequence.shape[0], CONTEXT_5P], dtype=sequence.dtype)
pad_3p = 255 * tf.ones([sequence.shape[0], CONTEXT_3P], dtype=sequence.dtype)
sequence = tf.concat([pad_5p, sequence, pad_3p], axis=1)
# one-hot encode
sequence = tf.one_hot(sequence, depth=4, dtype=tf.float16)
return sequence
def process_data(transcript_seq: str):
# convert to upper case
transcript_seq = transcript_seq.upper()
# get all target sites
target_seq = [transcript_seq[i: i + TARGET_LEN] for i in range(len(transcript_seq) - TARGET_LEN + 1)]
# prepare guide sequences
guide_seq = sequence_complement([seq[CONTEXT_5P:len(seq) - CONTEXT_3P] for seq in target_seq])
# model inputs
model_inputs = tf.concat([
tf.reshape(one_hot_encode_sequence(target_seq, add_context_padding=False), [len(target_seq), -1]),
tf.reshape(one_hot_encode_sequence(guide_seq, add_context_padding=True), [len(guide_seq), -1]),
], axis=-1)
return target_seq, guide_seq, model_inputs
def predict_on_target(transcript_seq: str, model: tf.keras.Model):
# parse transcript sequence
target_seq, guide_seq, model_inputs = process_data(transcript_seq)
# get predictions
normalized_lfc = model.predict(model_inputs, batch_size=BATCH_SIZE_COMPUTE, verbose=False)
predictions = pd.DataFrame({'Guide': guide_seq, 'Normalized LFC': tf.squeeze(normalized_lfc).numpy()})
predictions = predictions.sort_values('Normalized LFC')
return predictions
def find_off_targets(top_guides: pd.DataFrame, status_bar, status_text):
# load reference transcripts
reference_transcripts = load_transcripts([os.path.join('transcripts', f) for f in REFERENCE_TRANSCRIPTS])
# one-hot encode guides to form a filter
guide_filter = one_hot_encode_sequence(sequence_complement(top_guides['Guide']), add_context_padding=False)
guide_filter = tf.transpose(guide_filter, [1, 2, 0])
# loop over transcripts in batches
i = 0
print('Scanning for off-targets')
off_targets = pd.DataFrame()
while i < len(reference_transcripts):
# select batch
df_batch = reference_transcripts.iloc[i:min(i + BATCH_SIZE_SCAN, len(reference_transcripts))]
i += BATCH_SIZE_SCAN
# find locations of off-targets
transcripts = one_hot_encode_sequence(df_batch['seq'].values.tolist(), add_context_padding=False)
num_mismatches = GUIDE_LEN - tf.nn.conv1d(transcripts, guide_filter, stride=1, padding='SAME')
loc_off_targets = tf.where(tf.round(num_mismatches) <= NUM_MISMATCHES).numpy()
# off-targets discovered
if len(loc_off_targets) > 0:
# log off-targets
dict_off_targets = pd.DataFrame({
'On-target ID': top_guides.iloc[loc_off_targets[:, 2]]['On-target ID'],
'Guide': top_guides.iloc[loc_off_targets[:, 2]]['Guide'],
'Off-target ID': df_batch.index.values[loc_off_targets[:, 0]],
'Target': df_batch['seq'].values[loc_off_targets[:, 0]],
'Mismatches': tf.gather_nd(num_mismatches, loc_off_targets).numpy().astype(int),
'Midpoint': loc_off_targets[:, 1],
}).to_dict('records')
# trim transcripts to targets
for row in dict_off_targets:
start_location = row['Midpoint'] - (GUIDE_LEN // 2)
if start_location < CONTEXT_5P:
row['Target'] = row['Target'][0:GUIDE_LEN + CONTEXT_3P]
row['Target'] = 'N' * (TARGET_LEN - len(row['Target'])) + row['Target']
elif start_location + GUIDE_LEN + CONTEXT_3P > len(row['Target']):
row['Target'] = row['Target'][start_location - CONTEXT_5P:]
row['Target'] = row['Target'] + 'N' * (TARGET_LEN - len(row['Target']))
else:
row['Target'] = row['Target'][start_location - CONTEXT_5P:start_location + GUIDE_LEN + CONTEXT_3P]
if row['Mismatches'] == 0 and 'N' not in row['Target']:
assert row['Guide'] == sequence_complement([row['Target'][CONTEXT_5P:TARGET_LEN - CONTEXT_3P]])[0]
# append new off-targets
off_targets = pd.concat([off_targets, pd.DataFrame(dict_off_targets)])
# progress update
if status_bar:
status_text.text("Scanning for off-targets Percent complete: {:.2f}%".format(int(100 * min(i / len(reference_transcripts), 1))))
status_bar.progress(int(100 * min(i / len(reference_transcripts), 1)))
print('\rPercent complete: {:.2f}%'.format(100 * min(i / len(reference_transcripts), 1)), end='')
print('')
return off_targets
def predict_off_target(off_targets: pd.DataFrame, model: tf.keras.Model):
if len(off_targets) == 0:
return pd.DataFrame()
# append predictions off-target predictions
model_inputs = tf.concat([
tf.reshape(one_hot_encode_sequence(off_targets['Target'], add_context_padding=False), [len(off_targets), -1]),
tf.reshape(one_hot_encode_sequence(off_targets['Guide'], add_context_padding=True), [len(off_targets), -1]),
], axis=-1)
off_targets['Normalized LFC'] = model.predict(model_inputs, batch_size=BATCH_SIZE_COMPUTE, verbose=False)
return off_targets.sort_values('Normalized LFC')
def tiger_exhibit(transcripts: pd.DataFrame, status_bar=None, status_text=None, check_off_targets=False):
# load model
if os.path.exists('model'):
tiger = tf.keras.models.load_model('model')
else:
print('no saved model!')
exit()
# find top guides for each transcript
print('Finding top guides for each transcript')
on_target_predictions = pd.DataFrame(columns=['On-target ID', 'Guide', 'Normalized LFC'])
for i, (index, row) in enumerate(transcripts.iterrows()):
df = predict_on_target(row['seq'], model=tiger)
df['On-target ID'] = index
on_target_predictions = pd.concat([on_target_predictions, df.iloc[:NUM_TOP_GUIDES]])
# progress update
if status_bar:
status_text.text("Scanning for on-targets Percent complete: {:.2f}%".format(100 * min((i + 1) / len(transcripts), 1)))
status_bar.progress(int(100 * min((i + 1) / len(transcripts), 1)))
print('\rPercent complete: {:.2f}%'.format(100 * min((i + 1) / len(transcripts), 1)), end='')
print('')
# predict off-target effects for top guides
off_target_predictions = pd.DataFrame()
if check_off_targets:
off_targets = find_off_targets(on_target_predictions, status_bar, status_text)
off_target_predictions = predict_off_target(off_targets, model=tiger)
# reverse guide sequences
on_target_predictions['Guide'] = on_target_predictions['Guide'].apply(lambda s: s[::-1])
if check_off_targets and len(off_target_predictions) > 0:
off_target_predictions['Guide'] = off_target_predictions['Guide'].apply(lambda s: s[::-1])
return on_target_predictions.reset_index(drop=True), off_target_predictions.reset_index(drop=True)
if __name__ == '__main__':
# common arguments
parser = argparse.ArgumentParser()
parser.add_argument('--check_off_targets', action='store_true', default=False)
parser.add_argument('--fasta_path', type=str, default=None)
parser.add_argument('--simple_test', action='store_true', default=False)
args = parser.parse_args()
# simple test case
if args.simple_test:
# first 50 from EIF3B-003's CDS
simple_test = pd.DataFrame(dict(id=['ManualEntry'], seq=['ATGCAGGACGCGGAGAACGTGGCGGTGCCCGAGGCGGCCGAGGAGCGCGC']))
simple_test.set_index('id', inplace=True)
df_on_target, df_off_target = tiger_exhibit(simple_test, check_off_targets=args.check_off_targets)
df_on_target.to_csv('on_target.csv')
if args.check_off_targets:
df_off_target.to_csv('off_target.csv')
# directory of fasta files
elif args.fasta_path is not None and os.path.exists(args.fasta_path):
# check for any existing results
if os.path.exists('on_target.csv') or os.path.exists('off_target.csv'):
raise FileExistsError('please rename or delete existing results')
# load transcripts
df_transcripts = load_transcripts([os.path.join(args.fasta_path, f) for f in os.listdir(args.fasta_path)])
# process in batches
batch = 0
num_batches = len(df_transcripts) // BATCH_SIZE_TRANSCRIPTS
num_batches += (len(df_transcripts) % BATCH_SIZE_TRANSCRIPTS > 0)
for idx in range(0, len(df_transcripts), BATCH_SIZE_TRANSCRIPTS):
batch += 1
print('Batch {:d} of {:d}'.format(batch, num_batches))
# run batch
idx_stop = min(idx + BATCH_SIZE_TRANSCRIPTS, len(df_transcripts))
df_on_target, df_off_target = tiger_exhibit(df_transcripts[idx:idx_stop], check_off_targets=args.check_off_targets)
# save batch results
df_on_target.to_csv('on_target.csv', header=batch == 1, index=False, mode='a')
if args.check_off_targets:
df_off_target.to_csv('off_target.csv', header=batch == 1, index=False, mode='a')
# clear session to prevent memory blow up
tf.keras.backend.clear_session()