import os import tensorflow as tf import pandas as pd GUIDE_LEN = 23 NUCLEOTIDE_TOKENS = dict(zip(['A', 'C', 'G', 'T'], [0, 1, 2, 3])) # load model if os.path.exists('model'): tiger = tf.keras.models.load_model('model') else: print('no saved model!') exit() def process_data(x): x = [item.upper() for item in x] number_of_input = len(x) - GUIDE_LEN + 1 input_gens = [] for i in range(number_of_input): input_gens.append("".join(x[i:i + GUIDE_LEN])) merged_token = [] token_x = [NUCLEOTIDE_TOKENS[item] for item in x] for i in range(number_of_input): merged_token.extend(token_x[i:i + GUIDE_LEN]) one_hot_x = tf.one_hot(merged_token, depth=4) model_input_x = tf.reshape(one_hot_x, [-1, GUIDE_LEN * 4]) return input_gens, model_input_x def gen_report_table(input_gens, res): res = res.numpy().flatten().tolist() # print("ftaltten res: ", res) data = {"Gene": input_gens, "res": res} tbl = pd.DataFrame.from_dict(data) return tbl def tiger_predict(x): input_gens, model_input_x = process_data(x) # print("input gene: ", input_gens) # print("model_input: ", model_input_x) res = tiger.predict_step(model_input_x) # print("res: ", res) return gen_report_table(input_gens, res)