Spaces:
Runtime error
Runtime error
File size: 17,478 Bytes
13c6cad |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 |
# src/your_pkg/app/chatbot_manager.py
from __future__ import annotations
import json
import logging
import os
import threading
import time
import uuid
from dataclasses import dataclass
from datetime import datetime, timedelta
from pathlib import Path
from typing import Optional, Dict, List, Any
from functools import wraps
from contextvars import ContextVar
# Keep your orchestrator import AS-IS to avoid ripples.
from kallam.domain.agents.orchestrator import Orchestrator
from kallam.infra.session_store import SessionStore
from kallam.infra.message_store import MessageStore
from kallam.infra.summary_store import SummaryStore
from kallam.infra.exporter import JsonExporter
from kallam.infra.token_counter import TokenCounter
from kallam.infra.db import sqlite_conn # for the cleanup method
# -----------------------------------------------------------------------------
# Logging setup (configurable)
# -----------------------------------------------------------------------------
_request_id: ContextVar[str] = ContextVar("_request_id", default="-")
class RequestIdFilter(logging.Filter):
def filter(self, record: logging.LogRecord) -> bool:
record.request_id = _request_id.get()
return True
def _setup_logging(level: Optional[str] = None, json_mode: bool = False, logger_name: str = "kallam.chatbot"):
lvl = (level or os.getenv("LOG_LEVEL", "INFO")).upper()
root = logging.getLogger()
# Avoid duplicate handlers if constructed multiple times in REPL/tests
if not any(isinstance(h, logging.StreamHandler) for h in root.handlers):
handler = logging.StreamHandler()
if json_mode or os.getenv("LOG_JSON", "0") in {"1", "true", "True"}:
fmt = '{"ts":"%(asctime)s","lvl":"%(levelname)s","logger":"%(name)s","req":"%(request_id)s","msg":"%(message)s"}'
else:
fmt = "%(asctime)s | %(levelname)-7s | %(name)s | req=%(request_id)s | %(message)s"
handler.setFormatter(logging.Formatter(fmt))
handler.addFilter(RequestIdFilter())
root.addHandler(handler)
root.setLevel(lvl)
return logging.getLogger(logger_name)
logger = _setup_logging() # default init; can be reconfigured via ChatbotManager args
def _with_trace(level: int = logging.INFO):
"""
Decorator to visualize call sequence with timing and exceptions.
Uses the same request_id context if already set, or creates one.
"""
def deco(fn):
@wraps(fn)
def wrapper(self, *args, **kwargs):
rid = _request_id.get()
created_here = False
if rid == "-" and fn.__name__ in {"handle_message", "start_session"}:
rid = uuid.uuid4().hex[:8]
_request_id.set(rid)
created_here = True
logger.log(level, f"→ {fn.__name__}")
t0 = time.time()
try:
out = fn(self, *args, **kwargs)
dt = int((time.time() - t0) * 1000)
logger.log(level, f"← {fn.__name__} done in {dt} ms")
return out
except Exception:
logger.exception(f"✖ {fn.__name__} failed")
raise
finally:
# Reset the request id when we originated it here
if created_here:
_request_id.set("-")
return wrapper
return deco
EXPORT_FOLDER = "exported_sessions"
@dataclass
class SessionStats:
message_count: int = 0
total_tokens_in: int = 0
total_tokens_out: int = 0
avg_latency: float = 0.0
first_message: Optional[str] = None
last_message: Optional[str] = None
class ChatbotManager:
"""
Backward-compatible facade. Same constructor and methods as your original class.
Under the hood we delegate to infra stores and the orchestrator.
"""
def __init__(self,
db_path: str = "chatbot_data.db",
summarize_every_n_messages: int = 10,
message_limit: int = 10,
sunmmary_limit: int = 20,
chain_of_thoughts_limit: int = 5,
# logging knobs
log_level: Optional[str] = None,
log_json: bool = False,
log_name: str = "kallam.chatbot",
trace_level: int = logging.INFO):
if summarize_every_n_messages <= 0:
raise ValueError("summarize_every_n_messages must be positive")
if message_limit <= 0:
raise ValueError("message_limit must be positive")
# Reconfigure logger per instance if caller wants
global logger
logger = _setup_logging(level=log_level, json_mode=log_json, logger_name=log_name)
self._trace_level = trace_level
self.orchestrator = Orchestrator()
self.sum_every_n = summarize_every_n_messages
self.message_limit = message_limit
self.summary_limit = sunmmary_limit
self.chain_of_thoughts_limit = chain_of_thoughts_limit
self.db_path = Path(db_path)
self.lock = threading.RLock()
self.tokens = TokenCounter(capacity=1000)
# wire infra
db_url = f"sqlite:///{self.db_path}"
self.sessions = SessionStore(db_url)
self.messages = MessageStore(db_url)
self.summaries = SummaryStore(db_url)
self.exporter = JsonExporter(db_url, out_dir=EXPORT_FOLDER)
# ensure schema exists
self._ensure_schema()
logger.info(f"ChatbotManager initialized with database: {self.db_path}")
# ---------- schema bootstrap ----------
@_with_trace()
def _ensure_schema(self) -> None:
ddl_sessions = """
CREATE TABLE IF NOT EXISTS sessions (
session_id TEXT PRIMARY KEY,
timestamp TEXT NOT NULL,
last_activity TEXT NOT NULL,
saved_memories TEXT,
total_messages INTEGER DEFAULT 0,
total_user_messages INTEGER DEFAULT 0,
total_assistant_messages INTEGER DEFAULT 0,
total_summaries INTEGER DEFAULT 0,
created_at TEXT DEFAULT CURRENT_TIMESTAMP,
is_active BOOLEAN DEFAULT 1
);
"""
ddl_messages = """
CREATE TABLE IF NOT EXISTS messages (
id INTEGER PRIMARY KEY AUTOINCREMENT,
session_id TEXT NOT NULL,
message_id TEXT UNIQUE NOT NULL,
timestamp TEXT NOT NULL,
role TEXT NOT NULL CHECK(role IN ('user','assistant','system')),
content TEXT NOT NULL,
translated_content TEXT,
chain_of_thoughts TEXT,
tokens_input INTEGER DEFAULT 0,
tokens_output INTEGER DEFAULT 0,
latency_ms INTEGER,
flags TEXT,
created_at TEXT DEFAULT CURRENT_TIMESTAMP,
FOREIGN KEY(session_id) REFERENCES sessions(session_id) ON DELETE CASCADE
);
"""
ddl_summaries = """
CREATE TABLE IF NOT EXISTS summaries (
id INTEGER PRIMARY KEY AUTOINCREMENT,
session_id TEXT NOT NULL,
timestamp TEXT NOT NULL,
summary TEXT NOT NULL,
created_at TEXT DEFAULT CURRENT_TIMESTAMP,
FOREIGN KEY(session_id) REFERENCES sessions(session_id) ON DELETE CASCADE
);
"""
idx = [
"CREATE INDEX IF NOT EXISTS idx_messages_session_id ON messages(session_id)",
"CREATE INDEX IF NOT EXISTS idx_messages_timestamp ON messages(timestamp DESC)",
"CREATE INDEX IF NOT EXISTS idx_sessions_last_activity ON sessions(last_activity DESC)",
"CREATE INDEX IF NOT EXISTS idx_summaries_session_id ON summaries(session_id)",
"CREATE INDEX IF NOT EXISTS idx_messages_role ON messages(role)"
]
with sqlite_conn(str(self.db_path)) as c:
c.execute(ddl_sessions)
c.execute(ddl_messages)
c.execute(ddl_summaries)
for q in idx:
c.execute(q)
# ---------- validation/util ----------
def _validate_inputs(self, **kwargs):
validators = {
'user_message': lambda x: bool(x and str(x).strip()),
'session_id': lambda x: bool(x),
'role': lambda x: x in ('user', 'assistant', 'system'),
}
for k, v in kwargs.items():
fn = validators.get(k)
if fn and not fn(v):
raise ValueError(f"Invalid {k}: {v}")
# ---------- public API ----------
@_with_trace()
def start_session(self, saved_memories: Optional[str] = None) -> str:
sid = self.sessions.create(saved_memories=saved_memories)
logger.debug(f"start_session: saved_memories_len={len(saved_memories or '')} session_id={sid}")
return sid
@_with_trace()
def get_session(self, session_id: str) -> Optional[Dict[str, Any]]:
return self.sessions.get_meta(session_id)
@_with_trace()
def list_sessions(self, active_only: bool = True, limit: int = 50) -> List[Dict[str, Any]]:
return self.sessions.list(active_only=active_only, limit=limit)
@_with_trace()
def close_session(self, session_id: str) -> bool:
return self.sessions.close(session_id)
@_with_trace()
def delete_session(self, session_id: str) -> bool:
return self.sessions.delete(session_id)
@_with_trace()
def cleanup_old_sessions(self, days_old: int = 30) -> int:
if days_old <= 0:
raise ValueError("days_old must be positive")
cutoff = (datetime.now() - timedelta(days=days_old)).isoformat()
return self.sessions.cleanup_before(cutoff)
@_with_trace()
def handle_message(self, session_id: str, user_message: str) -> str:
# Ensure one correlation id per request flow
if _request_id.get() == "-":
_request_id.set(uuid.uuid4().hex[:8])
self._validate_inputs(session_id=session_id, user_message=user_message)
with self.lock:
t0 = time.time()
# ensure session exists
if not self.get_session(session_id):
raise ValueError(f"Session {session_id} not found")
# fetch context
original_history = self.messages.get_original_history(session_id, limit=self.message_limit)
eng_history = self.messages.get_translated_history(session_id, limit=self.message_limit)
eng_summaries = self.summaries.list(session_id, limit=self.summary_limit)
chain = self.messages.get_reasoning_traces(session_id, limit=self.chain_of_thoughts_limit)
meta = self.sessions.get_meta(session_id) or {}
memory_context = (meta.get("saved_memories") or "") if isinstance(meta, dict) else ""
if logger.isEnabledFor(logging.DEBUG):
logger.debug(
"context pulled: history=%d summaries=%d chain=%d mem_len=%d",
len(eng_history or []), len(eng_summaries or []), len(chain or []), len(memory_context),
)
# flags and translation
flags = self._get_flags_dict(session_id, user_message)
if logger.isEnabledFor(logging.DEBUG):
# keep flags concise if large
short_flags = {k: (v if isinstance(v, (int, float, bool, str)) else "…") for k, v in (flags or {}).items()}
logger.debug(f"flags: {short_flags}")
eng_msg = self.orchestrator.get_translation(
message=user_message, flags=flags, translation_type="forward"
)
# respond
response_commentary = self.orchestrator.get_commented_response(
original_history=original_history,
original_message=user_message,
eng_history=eng_history,
eng_message=eng_msg,
flags=flags,
chain_of_thoughts=chain,
memory_context=memory_context, # type: ignore
summarized_histories=eng_summaries,
)
bot_message = response_commentary["final_output"]
bot_eng = self.orchestrator.get_translation(
message=bot_message, flags=flags, translation_type="forward"
)
latency_ms = int((time.time() - t0) * 1000)
# persist
tok_user = self.tokens.count(user_message)
tok_bot = self.tokens.count(bot_message)
self.messages.append_user(session_id, content=user_message,
translated=eng_msg, flags=flags, tokens_in=tok_user)
self.messages.append_assistant(session_id, content=bot_message,
translated=bot_eng, reasoning=response_commentary,
tokens_out=tok_bot)
if logger.isEnabledFor(logging.DEBUG):
logger.debug(
"persisted: tokens_in=%d tokens_out=%d latency_ms=%d", tok_user, tok_bot, latency_ms
)
# summarize checkpoint
meta = self.sessions.get_meta(session_id)
if meta and (meta["total_user_messages"] % self.sum_every_n == 0) and (meta["total_user_messages"] > 0):
logger.log(self._trace_level, f"checkpoint: summarizing session {session_id}")
self.summarize_session(session_id)
return bot_message
@_with_trace()
def _get_flags_dict(self, session_id: str, user_message: str) -> Dict[str, Any]:
self._validate_inputs(session_id=session_id)
try:
# Build context Supervisor expects
chat_history = self.messages.get_translated_history(session_id, limit=self.message_limit) or []
summaries = self.summaries.list(session_id, limit=self.message_limit) or []
meta = self.sessions.get_meta(session_id) or {}
memory_context = (meta.get("saved_memories") or "") if isinstance(meta, dict) else ""
flags = self.orchestrator.get_flags_from_supervisor(
chat_history=chat_history,
user_message=user_message,
memory_context=memory_context,
summarized_histories=summaries
)
return flags
except Exception as e:
logger.warning(f"Failed to get flags from supervisor: {e}, using safe defaults")
# Safe defaults keep the pipeline alive
return {"language": "english", "doctor": False, "psychologist": False}
@_with_trace()
def summarize_session(self, session_id: str) -> str:
eng_history = self.messages.get_translated_history(session_id, limit=self.message_limit)
if not eng_history:
raise ValueError("No chat history found for session")
eng_summaries = self.summaries.list(session_id)
eng_summary = self.orchestrator.summarize_history(
chat_history=eng_history, eng_summaries=eng_summaries
)
self.summaries.add(session_id, eng_summary) # type: ignore
logger.debug("summary_len=%d total_summaries=%d", len(eng_summary or ""), len(eng_summaries or []) + 1)
return eng_summary # type: ignore
@_with_trace()
def get_session_stats(self, session_id: str) -> dict:
stats, session = self.messages.aggregate_stats(session_id)
stats_dict = {
"message_count": stats.get("message_count") or 0,
"total_tokens_in": stats.get("total_tokens_in") or 0,
"total_tokens_out": stats.get("total_tokens_out") or 0,
"avg_latency": float(stats.get("avg_latency") or 0),
"first_message": stats.get("first_message"),
"last_message": stats.get("last_message"),
}
logger.debug("stats: %s", stats_dict)
return {
"session_info": session, # already a dict from MessageStore
"stats": stats_dict, # plain dict
}
@_with_trace()
def get_original_chat_history(self, session_id: str, limit: int | None = None) -> list[dict]:
self._validate_inputs(session_id=session_id)
if limit is None:
limit = self.message_limit
# Fallback: direct query
with sqlite_conn(str(self.db_path)) as c:
rows = c.execute(
"""
SELECT role, content, timestamp
FROM messages
WHERE session_id = ?
ORDER BY id ASC
LIMIT ?
""",
(session_id, limit),
).fetchall()
return [dict(r) for r in rows]
@_with_trace()
def export_session_json(self, session_id: str) -> str:
path = self.exporter.export_session_json(session_id)
logger.info(f"exported session to {path}")
return path
@_with_trace()
def export_all_sessions_json(self) -> str:
path = self.exporter.export_all_sessions_json()
logger.info(f"exported session to {path}")
return path
|