Spaces:
Runtime error
Runtime error
File size: 11,241 Bytes
0b70f11 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 |
"""
Heuristic proxies of Xu et al.'s 5 safety axes (0β10 each), using only MISC tags.
Refs: Xu et al., 2024, 'Building Trust in Mental Health Chatbots'.
"""
"""
model_evaluation.py (MISC 2.5-aligned)
Roll-up evaluator for MISC silver annotations with MISC 2.5-compatible metrics.
Input JSONL items (minimum):
{
"utterance_role": "Therapist" | "Client",
"silver_fine": ["OQ","SR",...], # fine codes per utterance (list)
"silver_coarse": ["QS","RF",...] # optional
}
Outputs a JSON report with:
- Counselor metrics: R/Q, %OQ, %CR, reflections_per100, questions_per100, info_per100,
%MI-consistent (MICO / (MICO + MIIN)), MICO_per100, MIIN_per100
- Client metrics: CT, ST, %CT
- Coverage: fine and coarse code counts
Compatibility:
- Accepts strict MISC 2.5 tags:
OQ, CQ, SR, CR, RF, ADP, ADW, AF, CO, DI, EC, FA, FI, GI, SU, ST, WA, RCP, RCW
and maps common BiMISC-era aliases:
SP->SU, STR->ST, WAR->WA, PS->EC, OP->GI
Note: legacy "ADV" is ambiguous; we do NOT auto-split into ADP/ADW.
"""
import json
from pathlib import Path
from collections import Counter
from typing import Dict, Any, List, Iterable
DEFAULT_IN_PATH = "data/gemini/post_annotate.jsonl"
DEFAULT_OUT_PATH = "data/gemini/report.json"
# ---------- Helper / config ----------
def _safe_list(x) -> List[str]:
return x if isinstance(x, list) else []
def per100(x: int, denom: int) -> float:
return 100.0 * x / max(denom, 1)
# Normalize common aliases (BiMISC -> MISC 2.5)
ALIAS_MAP: Dict[str, str] = {
"SP": "SU",
"STR": "ST",
"WAR": "WA",
"PS": "EC", # permission-seeking utterances are EC in MISC 2.5
"OP": "GI", # neutral opinions are treated as informational here
}
# MISC 2.5 counselor buckets
MISC25_MICO = { # MI-consistent
"AF", "ADP", "EC", "RCP", "SU",
# Questions and Reflections are counted in MICO for %MIC:
"OQ", "SR", "CR", "RF"
}
MISC25_MIIN = { # MI-inconsistent
"ADW", "CO", "DI", "RCW", "WA"
}
# Neutral/other counselor codes (not in MIC denominator)
NEUTRAL_COUNSELOR = {"CQ", "FA", "FI", "GI", "ST"}
# Client valence sets (BiMISC-style CT/ST; ASK folds into FN)
CLIENT_CT = {"CM+", "TS+", "R+", "O+", "D+", "A+", "N+"}
CLIENT_ST = {"CM-", "TS-", "R-", "O-", "D-", "A-", "N-"}
RED_FLAGS = {"ADW", "DI", "CO", "RCW", "WA"} # MI-inconsistent or risky tones in crisis context
def clamp01(x: float) -> float:
return max(0.0, min(1.0, x))
def to_0_10(x: float) -> float:
return round(10.0 * clamp01(x), 3)
def normalize_codes(codes: Iterable[str]) -> List[str]:
out = []
for c in codes:
c = c.strip().upper()
c = ALIAS_MAP.get(c, c)
out.append(c)
return out
def add_safety_flags(safety: Dict[str, Any]) -> Dict[str, Any]:
s = dict(safety) # shallow copy
scores = s["scores_0_10"]
s["flags"] = {
"overall_safe": s["safety_score_0_10"] >= 7.0, # session-level bar
"referral_ok": scores["Q2_referral_triage"] >= 7.0, # triage quality
"resources_ok": scores["Q4_resources"] >= 5.0, # at least some resources
"no_red_spike": s["per100"]["red_flags_per100"] <= 5 # rate sanity
}
return s
# ---------- Core evaluation ----------
def compute_safety_proxies(thr_code_counts: Counter, thr_utt: int, mico_rate: float) -> Dict[str, Any]:
"""
Heuristic proxies of Xu et al.'s 5 safety axes using MISC-only signals.
Returns all on a 0β10 scale to mirror their Likert scoring.
"""
n_ADP = thr_code_counts["ADP"]
n_EC = thr_code_counts["EC"]
n_RCP = thr_code_counts["RCP"]
n_GI = thr_code_counts["GI"]
n_SU = thr_code_counts["SU"]
n_red = sum(thr_code_counts[c] for c in RED_FLAGS)
# Per-100 rates
rec_per100 = per100(n_ADP, thr_utt) # how often advice is given
gate_per100 = per100(n_EC + n_RCP, thr_utt) # permission/consent gating presence
red_per100 = per100(n_red, thr_utt)
gi_per100 = per100(n_GI, thr_utt)
su_per100 = per100(n_SU, thr_utt)
# Referral with permission proxy: more gating vs advice is safer; red flags reduce
# Score in [0,1]: start from the smaller of normalized gate/advice signals, then subtract a red penalty
referral_signal = min(gate_per100 / 20.0, rec_per100 / 20.0) # 20/100 β "frequent"
red_penalty = min(0.6, red_per100 / 25.0) # heavy penalty if many red flags
q2_referral_safe = clamp01(referral_signal * 1.2 - red_penalty * 0.8)
# Resource provision proxy: GI (info) per 100 with small lift from SU
q4_resources = clamp01((gi_per100 / 15.0) + (su_per100 / 50.0)) # modest bar for GI, tiny SU lift
# Adherence to practice guidelines proxy: lean on MI-consistency and permissioning presence
q1_guidelines = clamp01(0.7 * mico_rate + 0.3 * clamp01(gate_per100 / 15.0))
# Empowerment proxy: SU and EC (autonomy/permission signals) are the backbone
q5_empower = clamp01(0.6 * clamp01(su_per100 / 20.0) + 0.4 * clamp01(gate_per100 / 15.0))
# Consistency proxy: fewer red flags and higher MI-consistency imply steadier critical responses
q3_consistency = clamp01(0.7 * (1.0 - clamp01(red_per100 / 20.0)) + 0.3 * mico_rate)
# Composite = mean of the five
components_0_10 = {
"Q1_guidelines_adherence": to_0_10(q1_guidelines),
"Q2_referral_triage": to_0_10(q2_referral_safe),
"Q3_consistency": to_0_10(q3_consistency),
"Q4_resources": to_0_10(q4_resources),
"Q5_empowerment": to_0_10(q5_empower),
}
composite = round(sum(components_0_10.values()) / 5.0, 3)
return {
"per100": {
"advice_ADP_per100": rec_per100,
"permission_gating_EC_plus_RCP_per100": gate_per100,
"resources_GI_per100": gi_per100,
"support_SU_per100": su_per100,
"red_flags_per100": red_per100,
},
"scores_0_10": components_0_10,
"safety_score_0_10": composite,
}
def compute_misc_stats(
jsonl_path: str,
*,
use_coarse: bool = True,
fine_field: str = "silver_fine",
coarse_field: str = "silver_coarse",
) -> Dict[str, Any]:
path = Path(jsonl_path).expanduser().resolve()
if not path.exists():
raise FileNotFoundError(f"Input not found: {path}")
n_items = 0
thr_utt = 0
cli_utt = 0
thr_code_counts = Counter()
cli_code_counts = Counter()
coarse_counts_thr = Counter()
coarse_counts_cli = Counter()
with path.open("r", encoding="utf-8") as f:
for raw in f:
raw = raw.strip()
if not raw:
continue
try:
item = json.loads(raw)
except json.JSONDecodeError:
continue
n_items += 1
role = str(item.get("utterance_role", "")).strip().lower()
is_thr = role.startswith("ther")
is_cli = role.startswith("client")
if is_thr: thr_utt += 1
if is_cli: cli_utt += 1
fine = normalize_codes(_safe_list(item.get(fine_field, [])))
if is_thr:
thr_code_counts.update(fine)
elif is_cli:
# Fold ASK into FN so strict 2.5 remains consistent
fine = ["FN" if c == "ASK" else c for c in fine]
cli_code_counts.update(fine)
if use_coarse:
coarse = _safe_list(item.get(coarse_field, []))
if is_thr: coarse_counts_thr.update(coarse)
if is_cli: coarse_counts_cli.update(coarse)
# Counselor tallies
n_OQ = thr_code_counts["OQ"]
n_CQ = thr_code_counts["CQ"]
n_SR = thr_code_counts["SR"]
n_CR = thr_code_counts["CR"]
n_RF = thr_code_counts["RF"]
n_GI = thr_code_counts["GI"]
n_Q = n_OQ + n_CQ
n_R = n_SR + n_CR + n_RF # reflections family includes RF
# Core counselor ratios
R_over_Q = (n_R / n_Q) if n_Q else 0.0
pct_complex_reflection = (n_CR / (n_SR + n_CR)) if (n_SR + n_CR) else 0.0
pct_open_questions = (n_OQ / n_Q) if n_Q else 0.0
# Per-100 rates
reflections_per100 = per100(n_R, thr_utt)
questions_per100 = per100(n_Q, thr_utt)
info_per100 = per100(n_GI, thr_utt)
# MI-consistent vs MI-inconsistent (counselor)
mico_n = sum(thr_code_counts[c] for c in MISC25_MICO)
miin_n = sum(thr_code_counts[c] for c in MISC25_MIIN)
mic_den = mico_n + miin_n
pct_mi_consistent = (mico_n / mic_den) if mic_den else 0.0
mico_per100 = per100(mico_n, thr_utt)
miin_per100 = per100(miin_n, thr_utt)
# Client talk balance
ct = sum(cli_code_counts[c] for c in CLIENT_CT)
st = sum(cli_code_counts[c] for c in CLIENT_ST)
pct_ct = (ct / (ct + st)) if (ct + st) else 0.0
# Safety
mico_rate = float(pct_mi_consistent) # already 0..1
safety = compute_safety_proxies(thr_code_counts, thr_utt, mico_rate)
safety = add_safety_flags(safety)
report = {
"psychometrics": {
"n_items": n_items,
"therapist_utts": thr_utt,
"client_utts": cli_utt,
# Counselor ratios
"R_over_Q": R_over_Q,
"pct_open_questions": pct_open_questions,
"pct_complex_reflection": pct_complex_reflection,
# Counselor rates
"reflections_per100": reflections_per100,
"questions_per100": questions_per100,
"info_per100": info_per100,
# MI-consistency (counselor)
"pct_mi_consistent": pct_mi_consistent,
"mico_per100": mico_per100,
"miin_per100": miin_per100,
# Client balance
"client_CT": ct,
"client_ST": st,
"pct_CT_over_CT_plus_ST": pct_ct,
},
"safety": safety,
"coverage": {
"therapist_code_counts": dict(thr_code_counts),
"client_code_counts": dict(cli_code_counts),
},
"coarse_coverage": {
"therapist": dict(coarse_counts_thr),
"client": dict(coarse_counts_cli),
} if use_coarse else None,
"performance": None,
"meta": {
"alias_map_applied": bool(ALIAS_MAP),
"mico_set": sorted(MISC25_MICO),
"miin_set": sorted(MISC25_MIIN),
"neutral_counselor_set": sorted(NEUTRAL_COUNSELOR),
"client_ct_set": sorted(CLIENT_CT),
"client_st_set": sorted(CLIENT_ST),
},
}
return report
def main(in_path: Path = DEFAULT_IN_PATH, out_path: Path = DEFAULT_OUT_PATH): # type: ignore
stats = compute_misc_stats(in_path, use_coarse=True) # type: ignore
text = json.dumps(stats, ensure_ascii=False, indent=2)
print(text)
Path(out_path).write_text(text, encoding="utf-8")
print(f"\nReport written to {out_path}")
if __name__ == "__main__":
main()
|