Spaces:
Runtime error
Runtime error
File size: 20,078 Bytes
0b70f11 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 |
# radar_visualizer_individual.py
# Requirements: matplotlib, numpy, pandas
import json
import math
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from pathlib import Path
from typing import Dict, List, Optional
# -----------------
# CONFIG
# -----------------
REPORT_CONFIGS = {
# label: { path: Path|str, color: hex|rgb tuple (optional) }
"Real Psychologist": {"path": "../data/human/report.json", "color": "#ff0000"},
"Our KaLLaM": {"path": "../data/orchestrated/report.json", "color": "#2ca02c"},
"Gemini-2.5-flash-light": {"path": "../data/gemini/report.json", "color": "#9dafff"},
"Gemma-SEA-LION-v4-27B-IT": {"path": "../data/SEA-Lion/report.json", "color": "#8d35ff"},
# Add more models here...
}
# Psychometric targets (units are already scaled as shown)
RECOMMENDED = {
"R/Q ratio": 1.0,
"% Open Questions": 50.0,
"% Complex Reflections": 40.0,
"% MI-Consistent": 90.0,
"% Change Talk": 50.0
}
# Safety keys (Xu et al. proxies, 0β10)
SAFETY_KEYS = [
"Q1_guidelines_adherence",
"Q2_referral_triage",
"Q3_consistency",
"Q4_resources",
"Q5_empowerment",
]
# -----------------
# LOADING & EXTRACTION
# -----------------
def _load_json(path_like) -> Optional[dict]:
p = Path(path_like).expanduser()
if not p.exists():
print(f"[warn] Missing report: {p}")
return None
try:
with p.open("r", encoding="utf-8") as f:
return json.load(f)
except Exception as e:
print(f"[warn] Failed to read {p}: {e}")
return None
def _extract_psychometrics(report: Optional[dict]) -> dict:
psy = report.get("psychometrics", {}) if report else {}
try:
rq = float(psy.get("R_over_Q", 0.0))
poq = float(psy.get("pct_open_questions", 0.0)) * 100.0
pcr = float(psy.get("pct_complex_reflection", 0.0)) * 100.0
mic = psy.get("pct_mi_consistent", psy.get("pct_mi_consistency", psy.get("pct_mi_consist", 0.0)))
mic = float(mic) * 100.0
pct_ct = float(psy.get("pct_CT_over_CT_plus_ST", 0.0)) * 100.0
except Exception:
rq, poq, pcr, mic, pct_ct = 0.0, 0.0, 0.0, 0.0, 0.0
return {
"R/Q ratio": rq,
"% Open Questions": poq,
"% Complex Reflections": pcr,
"% MI-Consistent": mic,
"% Change Talk": pct_ct,
}
def _extract_safety(report: Optional[dict]) -> dict:
if not report:
return {}
safety = report.get("safety", {})
scores = safety.get("scores_0_10", {})
out = {}
for k in SAFETY_KEYS:
try:
out[k] = float(scores.get(k, 0.0))
except Exception:
out[k] = 0.0
return out
# -----------------
# UTIL
# -----------------
def values_by_labels(d: Dict[str, float], labels: List[str]) -> List[float]:
out = []
for k in labels:
v = d.get(k, np.nan)
out.append(0.0 if (pd.isna(v) or v is None) else float(v))
return out
def _make_angles(n: int) -> List[float]:
ang = np.linspace(0, 2 * math.pi, n, endpoint=False).tolist()
return ang + ang[:1]
def _as_closed(seq: List[float]) -> List[float]:
return seq + seq[:1] if seq else []
# -----------------
# DATA BUILD
# -----------------
def build_all_data(report_configs: dict):
all_data = {}
colors = {}
for label, cfg in report_configs.items():
rep = _load_json(cfg.get("path"))
colors[label] = cfg.get("color", "#1f77b4")
pm = _extract_psychometrics(rep)
sm = _extract_safety(rep)
all_data[label] = {"psychometrics": pm, "safety": sm, "report": rep}
return all_data, colors
# -----------------
# CONSOLIDATED 1x2 BARS (absolute + recommended)
# -----------------
def render_unified_absolute_only(report_configs=REPORT_CONFIGS, save_path: str = "./radar_outputs/ALL_MODELS_absolute.png"):
"""
One figure, 1x2 grid:
[0] Psychometrics β Absolute (Human + all models + Recommended targets as hatched bars)
[1] Safety β Absolute (Human + all models + Recommended=10 for all safety as hatched bars)
"""
all_data, colors = build_all_data(report_configs)
human_label = "Real Psychologist"
if human_label not in all_data:
print("[warn] No human baseline.")
return
entity_labels = [lbl for lbl in all_data.keys() if lbl != human_label]
if not entity_labels:
print("[warn] No non-human models.")
return
human_psych = all_data[human_label]["psychometrics"] or {}
human_safety = all_data[human_label]["safety"] or {}
psych_axes = list(RECOMMENDED.keys())
safety_axes = SAFETY_KEYS
human_psych_vals = values_by_labels(human_psych, psych_axes)
model_psych_matrix = np.array([
[float(all_data[m]["psychometrics"].get(metric, 0.0)) for m in entity_labels]
for metric in psych_axes
])
has_any_model_safety = any(bool(all_data[m]["safety"]) for m in entity_labels)
human_safety_vals = values_by_labels(human_safety, safety_axes) if human_safety else [0.0] * len(safety_axes)
model_safety_matrix = np.array([
[float(all_data[m]["safety"].get(metric, 0.0)) for m in entity_labels]
for metric in safety_axes
]) if has_any_model_safety and human_safety else np.zeros((len(safety_axes), len(entity_labels)))
fig, axs = plt.subplots(1, 2, figsize=(18, 6))
fig.suptitle("All Models vs Real Psychologist β Absolute Scores", fontsize=18, fontweight="bold", y=0.98)
# ----------------- Psychometrics Absolute -----------------
ax_abs_p = axs[0]
x = np.arange(len(psych_axes))
# bars per group = Recommended + Human + N models
n_models = len(entity_labels)
total_bars = 2 + n_models
group_width = 0.9
bar_width = group_width / total_bars
start = -group_width / 2
# Recommended bars (hatched)
rec_vals = values_by_labels(RECOMMENDED, psych_axes)
rec_offset = start + bar_width * 0.5
ax_abs_p.bar(
x + rec_offset, rec_vals, width=bar_width, label="Recommended",
edgecolor="#222222", facecolor="none", hatch="//", linewidth=1.2
)
# Human bars
human_offset = start + bar_width * 1.5
ax_abs_p.bar(x + human_offset, human_psych_vals, width=bar_width, label=human_label, color="#ff0000", alpha=0.9)
# Model bars
y_max_psy = max([*human_psych_vals, *rec_vals]) if (human_psych_vals or rec_vals) else 0
for i, m in enumerate(entity_labels):
offs = start + bar_width * (i + 2.5)
vals = model_psych_matrix[:, i]
y_max_psy = max(y_max_psy, float(np.nanmax(vals)) if vals.size else 0)
ax_abs_p.bar(x + offs, vals, width=bar_width, label=m, color=colors.get(m, "#1f77b4"), alpha=0.9)
ax_abs_p.set_xticks(x)
ax_abs_p.set_xticklabels(psych_axes, rotation=15, ha="right")
ax_abs_p.set_ylabel("Score")
ax_abs_p.set_ylim(0, y_max_psy * 1.15 if y_max_psy > 0 else 1)
ax_abs_p.set_title("Psychometrics β Absolute")
ax_abs_p.grid(axis="y", alpha=0.3)
ax_abs_p.legend(ncol=2, frameon=False, bbox_to_anchor=(1.0, 1.15))
# ----------------- Safety Absolute -----------------
ax_abs_s = axs[1]
x_s = np.arange(len(safety_axes))
# bars per group = Recommended + Human + N models
total_bars_s = 2 + len(entity_labels)
group_width_s = 0.9
bar_width_s = group_width_s / total_bars_s
start_s = -group_width_s / 2
# Recommended safety target = 10 for each key
rec_safety_vals = [10.0] * len(safety_axes)
rec_offset_s = start_s + bar_width_s * 0.5
ax_abs_s.bar(
x_s + rec_offset_s, rec_safety_vals, width=bar_width_s, label="Ideal Safety",
edgecolor="#222222", facecolor="none", hatch="//", linewidth=1.2
)
# Human bars
human_offset_s = start_s + bar_width_s * 1.5
ax_abs_s.bar(x_s + human_offset_s, human_safety_vals, width=bar_width_s, label=human_label, color="#ff0000", alpha=0.9)
# Models
if has_any_model_safety and human_safety:
for i, m in enumerate(entity_labels):
offs = start_s + bar_width_s * (i + 2.5)
vals = model_safety_matrix[:, i]
ax_abs_s.bar(x_s + offs, vals, width=bar_width_s, label=m, color=colors.get(m, "#1f77b4"), alpha=0.9)
ax_abs_s.set_xticks(x_s)
ax_abs_s.set_xticklabels(["Guidelines", "Referral", "Consistency", "Resources", "Empowerment"], rotation=15, ha="right")
ax_abs_s.set_ylabel("0β10")
ax_abs_s.set_ylim(0, 10)
ax_abs_s.set_title("Safety β Absolute")
ax_abs_s.grid(axis="y", alpha=0.3)
ax_abs_s.legend(ncol=2, frameon=False, bbox_to_anchor=(1.0, 1.15))
plt.tight_layout()
if save_path:
Path(save_path).parent.mkdir(parents=True, exist_ok=True)
fig.savefig(save_path, dpi=300, bbox_inches="tight", facecolor="white")
print(f"[info] Saved absolute-only comparison to {save_path}")
plt.show()
# -----------------
# FINAL POLYGON ACCURACY (Similarity-to-Human, 0β100)
# -----------------
def calculate_similarity_scores(all_data, human_label="Real Psychologist", max_score=100):
human_data = all_data.get(human_label, {}) or {}
human_psych = human_data.get("psychometrics", {}) or {}
human_safety = human_data.get("safety", {}) or {}
similarity_scores = {}
SAFETY_SCALE_MAX = 10.0
PSYCH_SCALE_MAX = 100.0
RQ_RATIO_MAX = 5.0
def scale_max(metric_name: str) -> float:
if metric_name in SAFETY_KEYS:
return SAFETY_SCALE_MAX
if metric_name == "R/Q ratio":
return RQ_RATIO_MAX
return PSYCH_SCALE_MAX
for model_name, data in all_data.items():
if model_name == human_label:
continue
model_psych = data.get("psychometrics", {}) or {}
model_safety = data.get("safety", {}) or {}
model_sim = {}
for metric in RECOMMENDED.keys():
if metric in model_psych and metric in human_psych:
m = float(model_psych[metric])
h = float(human_psych[metric])
smax = scale_max(metric)
sim = max_score * (1 - (abs(m - h) / smax))
model_sim[metric] = max(0, min(max_score, sim))
for metric in SAFETY_KEYS:
if metric in model_safety and metric in human_safety:
m = float(model_safety[metric])
h = float(human_safety[metric])
smax = scale_max(metric)
sim = max_score * (1 - (abs(m - h) / smax))
model_sim[metric] = max(0, min(max_score, sim))
if model_sim:
similarity_scores[model_name] = model_sim
return similarity_scores
def render_final_similarity_polygon(report_configs=REPORT_CONFIGS, save_path: str = "./radar_outputs/FINAL_similarity_polygon.png"):
"""
One polygon radar: 10 axes total (5 psych + 5 safety), values are 0β100 similarity to the human baseline.
Higher = closer to human. All models overlaid on the same axes.
"""
all_data, colors = build_all_data(report_configs)
sim = calculate_similarity_scores(all_data)
if not sim:
print("[warn] No similarity scores; need human + at least one model with overlapping metrics.")
return
# Fixed unified axis order: 5 psych + 5 safety
axes_labels_full = list(RECOMMENDED.keys()) + SAFETY_KEYS
# Shorten labels for readability
def short(lbl: str) -> str:
s = lbl
s = s.replace("% ", "")
s = s.replace("Open Questions", "Open Q")
s = s.replace("Complex Reflections", "Complex R")
s = s.replace("MI-Consistent", "MI Consist")
s = s.replace("Change Talk", "Change Talk")
s = s.replace("R/Q ratio", "R/Q")
s = s.replace("Q1_guidelines_adherence", "Guidelines")
s = s.replace("Q2_referral_triage", "Referral")
s = s.replace("Q3_consistency", "Consistency")
s = s.replace("Q4_resources", "Resources")
s = s.replace("Q5_empowerment", "Empowerment")
return s
labels = [short(x) for x in axes_labels_full]
N = len(axes_labels_full)
angles = _make_angles(N)
fig = plt.figure(figsize=(8, 6))
ax = plt.subplot(1, 1, 1, polar=True)
fig.suptitle("Final Polygon Accuracy β Similarity to Real Psychologist (0β100)", fontsize=16, fontweight="bold", y=0.98)
ax.set_theta_offset(math.pi / 2)
ax.set_theta_direction(-1)
ax.set_xticks(angles[:-1])
ax.set_xticklabels(labels, fontsize=10)
ax.set_ylim(0, 100)
ax.grid(True, alpha=0.3)
# Reference rings
circle_angles = np.linspace(0, 2 * math.pi, 360)
for ref_val in [25, 50, 75, 90]:
lw = 2.0 if ref_val >= 75 else 1.2
ax.plot(circle_angles, [ref_val] * 360, linestyle="--", linewidth=lw, color="#aaaaaa", alpha=0.65)
# Plot each model
for model_name, data in all_data.items():
if model_name == "Real Psychologist":
continue
scores = sim.get(model_name, {})
vals = [float(scores.get(k, 0.0)) for k in axes_labels_full]
closed = _as_closed(vals)
color = REPORT_CONFIGS.get(model_name, {}).get("color", "#1f77b4")
ax.fill(angles, closed, alpha=0.15, color=color)
ax.plot(angles, closed, linewidth=2.2, label=f"{model_name}", color=color, alpha=0.95)
ax.scatter(angles[:-1], vals, s=36, color=color, alpha=0.9, zorder=5)
ax.legend(loc="upper right", bbox_to_anchor=(1.3, 1.08), frameon=False, fontsize=9)
# Footer helper
fig.text(0.02, 0.02,
"Scale: higher is better. 90+ excellent, 75+ good, 50+ fair.",
fontsize=9, va="bottom",
bbox=dict(boxstyle="round,pad=0.45", facecolor="whitesmoke", alpha=0.9))
plt.tight_layout()
if save_path:
Path(save_path).parent.mkdir(parents=True, exist_ok=True)
plt.savefig(save_path, dpi=300, bbox_inches="tight", facecolor="white")
print(f"[info] Saved final similarity polygon to {save_path}")
plt.show()
# -----------------
# RESULTS TABLE (absolute + similarity) β CSV + PNG
# -----------------
def _short_label(lbl: str) -> str:
s = lbl
s = s.replace("% ", "")
s = s.replace("Open Questions", "Open Q")
s = s.replace("Complex Reflections", "Complex R")
s = s.replace("MI-Consistent", "MI Consist")
s = s.replace("Change Talk", "Change Talk")
s = s.replace("R/Q ratio", "R/Q")
s = s.replace("Q1_guidelines_adherence", "Guidelines")
s = s.replace("Q2_referral_triage", "Referral")
s = s.replace("Q3_consistency", "Consistency")
s = s.replace("Q4_resources", "Resources")
s = s.replace("Q5_empowerment", "Empowerment")
return s
def build_results_dataframes(report_configs=REPORT_CONFIGS):
"""
Returns:
absolute_df: rows = metrics (psych + safety), cols = all entities (human + models)
similarity_df: rows = metrics, cols = models (0β100 similarity to human)
"""
all_data, _ = build_all_data(report_configs)
# Unified metric order
metrics = list(RECOMMENDED.keys()) + SAFETY_KEYS
# Absolute values table
abs_cols = []
abs_col_data = []
for entity in all_data.keys():
combined = {}
combined.update(all_data[entity].get("psychometrics", {}) or {})
combined.update(all_data[entity].get("safety", {}) or {})
abs_cols.append(entity)
abs_col_data.append([float(combined.get(m, np.nan)) for m in metrics])
absolute_df = pd.DataFrame(
data=np.array(abs_col_data).T,
index=metrics,
columns=abs_cols
)
# Similarity table (0β100)
sim = calculate_similarity_scores(all_data)
if sim:
sim_cols = []
sim_col_data = []
for model_name in sim.keys():
sim_cols.append(model_name)
sim_col_data.append([float(sim[model_name].get(m, np.nan)) for m in metrics])
similarity_df = pd.DataFrame(
data=np.array(sim_col_data).T,
index=metrics,
columns=sim_cols
)
else:
similarity_df = pd.DataFrame(index=metrics)
# Round for readability
absolute_df = absolute_df.round(2)
similarity_df = similarity_df.round(1)
return absolute_df, similarity_df
def render_results_table(
report_configs=REPORT_CONFIGS,
save_path_png: str = "./radar_outputs/RESULTS_table.png",
save_path_csv: str = "./radar_outputs/RESULTS_table.csv",
include_similarity: bool = True
):
"""
Renders a single figure containing a table:
- Absolute scores for all entities (human + models)
- If include_similarity=True, appends similarity-to-human columns (with ' (sim)' suffix)
Also exports a CSV with the same data.
"""
absolute_df, similarity_df = build_results_dataframes(report_configs)
# Build combined table
if include_similarity and not similarity_df.empty:
sim_renamed = similarity_df.add_suffix(" (sim)")
combined_df = absolute_df.join(sim_renamed, how="left")
else:
combined_df = absolute_df.copy()
# Pretty row labels
combined_df.index = [_short_label(x) for x in combined_df.index]
# Export CSV
out_dir = Path(save_path_png).parent
out_dir.mkdir(parents=True, exist_ok=True)
combined_df.to_csv(save_path_csv, encoding="utf-8")
print(f"[info] Saved results CSV to {save_path_csv}")
# Render matplotlib table
n_rows, n_cols = combined_df.shape
# Heuristic sizing: wider for more columns, taller for more rows
fig_w = min(2 + 0.85 * n_cols, 28) # cap so it doesn't become ridiculous
fig_h = min(2 + 0.55 * n_rows, 32)
fig, ax = plt.subplots(figsize=(fig_w, fig_h))
ax.axis("off")
title = "Model Results β Absolute Scores"
if include_similarity and not similarity_df.empty:
title += " + Similarity-to-Human (0β100)"
fig.suptitle(title, fontsize=16, fontweight="bold", y=0.995)
# Convert DataFrame to table
tbl = ax.table(
cellText=combined_df.fillna("").values,
rowLabels=combined_df.index.tolist(),
colLabels=combined_df.columns.tolist(),
cellLoc="center",
loc="center"
)
# Styling
tbl.auto_set_font_size(False)
tbl.set_fontsize(9)
# Increase row height slightly for readability
tbl.scale(1.0, 1.15)
# Header bold-ish
for (row, col), cell in tbl.get_celld().items():
if row == 0 or col == -1:
# Matplotlib tables index headers differently; this keeps it simple
pass
# Shade header row and first column labels
if row == 0:
cell.set_facecolor("#f2f2f2")
cell.set_edgecolor("#c0c0c0")
cell.set_linewidth(1.0)
# Light grid effect
for cell in tbl.get_celld().values():
cell.set_edgecolor("#dddddd")
cell.set_linewidth(0.5)
plt.tight_layout()
fig.savefig(save_path_png, dpi=300, bbox_inches="tight", facecolor="white")
print(f"[info] Saved results table figure to {save_path_png}")
plt.show()
# -----------------
# MAIN
# -----------------
if __name__ == "__main__":
render_unified_absolute_only(REPORT_CONFIGS, save_path="./radar_outputs/ALL_MODELS_absolute.png")
render_final_similarity_polygon(REPORT_CONFIGS, save_path="./radar_outputs/FINAL_similarity_polygon.png")
render_results_table(REPORT_CONFIGS,
save_path_png="./radar_outputs/RESULTS_table.png",
save_path_csv="./radar_outputs/RESULTS_table.csv",
include_similarity=True) |