File size: 20,078 Bytes
0b70f11
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
# radar_visualizer_individual.py
# Requirements: matplotlib, numpy, pandas

import json
import math
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from pathlib import Path
from typing import Dict, List, Optional

# -----------------
# CONFIG
# -----------------
REPORT_CONFIGS = {
    # label: { path: Path|str, color: hex|rgb tuple (optional) }
    "Real Psychologist": {"path": "../data/human/report.json", "color": "#ff0000"},
    "Our KaLLaM": {"path": "../data/orchestrated/report.json", "color": "#2ca02c"},
    "Gemini-2.5-flash-light": {"path": "../data/gemini/report.json", "color": "#9dafff"},
    "Gemma-SEA-LION-v4-27B-IT": {"path": "../data/SEA-Lion/report.json", "color": "#8d35ff"},
    # Add more models here...
}

# Psychometric targets (units are already scaled as shown)
RECOMMENDED = {
    "R/Q ratio": 1.0,
    "% Open Questions": 50.0,
    "% Complex Reflections": 40.0,
    "% MI-Consistent": 90.0,
    "% Change Talk": 50.0
}

# Safety keys (Xu et al. proxies, 0–10)
SAFETY_KEYS = [
    "Q1_guidelines_adherence",
    "Q2_referral_triage",
    "Q3_consistency",
    "Q4_resources",
    "Q5_empowerment",
]

# -----------------
# LOADING & EXTRACTION
# -----------------
def _load_json(path_like) -> Optional[dict]:
    p = Path(path_like).expanduser()
    if not p.exists():
        print(f"[warn] Missing report: {p}")
        return None
    try:
        with p.open("r", encoding="utf-8") as f:
            return json.load(f)
    except Exception as e:
        print(f"[warn] Failed to read {p}: {e}")
        return None

def _extract_psychometrics(report: Optional[dict]) -> dict:
    psy = report.get("psychometrics", {}) if report else {}
    try:
        rq   = float(psy.get("R_over_Q", 0.0))
        poq  = float(psy.get("pct_open_questions", 0.0)) * 100.0
        pcr  = float(psy.get("pct_complex_reflection", 0.0)) * 100.0
        mic  = psy.get("pct_mi_consistent", psy.get("pct_mi_consistency", psy.get("pct_mi_consist", 0.0)))
        mic  = float(mic) * 100.0
        pct_ct = float(psy.get("pct_CT_over_CT_plus_ST", 0.0)) * 100.0
    except Exception:
        rq, poq, pcr, mic, pct_ct = 0.0, 0.0, 0.0, 0.0, 0.0
    return {
        "R/Q ratio": rq,
        "% Open Questions": poq,
        "% Complex Reflections": pcr,
        "% MI-Consistent": mic,
        "% Change Talk": pct_ct,
    }

def _extract_safety(report: Optional[dict]) -> dict:
    if not report:
        return {}
    safety = report.get("safety", {})
    scores = safety.get("scores_0_10", {})
    out = {}
    for k in SAFETY_KEYS:
        try:
            out[k] = float(scores.get(k, 0.0))
        except Exception:
            out[k] = 0.0
    return out

# -----------------
# UTIL
# -----------------
def values_by_labels(d: Dict[str, float], labels: List[str]) -> List[float]:
    out = []
    for k in labels:
        v = d.get(k, np.nan)
        out.append(0.0 if (pd.isna(v) or v is None) else float(v))
    return out

def _make_angles(n: int) -> List[float]:
    ang = np.linspace(0, 2 * math.pi, n, endpoint=False).tolist()
    return ang + ang[:1]

def _as_closed(seq: List[float]) -> List[float]:
    return seq + seq[:1] if seq else []

# -----------------
# DATA BUILD
# -----------------
def build_all_data(report_configs: dict):
    all_data = {}
    colors = {}
    for label, cfg in report_configs.items():
        rep = _load_json(cfg.get("path"))
        colors[label] = cfg.get("color", "#1f77b4")
        pm = _extract_psychometrics(rep)
        sm = _extract_safety(rep)
        all_data[label] = {"psychometrics": pm, "safety": sm, "report": rep}
    return all_data, colors

# -----------------
# CONSOLIDATED 1x2 BARS (absolute + recommended)
# -----------------
def render_unified_absolute_only(report_configs=REPORT_CONFIGS, save_path: str = "./radar_outputs/ALL_MODELS_absolute.png"):
    """

    One figure, 1x2 grid:

      [0] Psychometrics β€” Absolute (Human + all models + Recommended targets as hatched bars)

      [1] Safety        β€” Absolute (Human + all models + Recommended=10 for all safety as hatched bars)

    """
    all_data, colors = build_all_data(report_configs)

    human_label = "Real Psychologist"
    if human_label not in all_data:
        print("[warn] No human baseline.")
        return

    entity_labels = [lbl for lbl in all_data.keys() if lbl != human_label]
    if not entity_labels:
        print("[warn] No non-human models.")
        return

    human_psych = all_data[human_label]["psychometrics"] or {}
    human_safety = all_data[human_label]["safety"] or {}

    psych_axes = list(RECOMMENDED.keys())
    safety_axes = SAFETY_KEYS

    human_psych_vals = values_by_labels(human_psych, psych_axes)
    model_psych_matrix = np.array([
        [float(all_data[m]["psychometrics"].get(metric, 0.0)) for m in entity_labels]
        for metric in psych_axes
    ])

    has_any_model_safety = any(bool(all_data[m]["safety"]) for m in entity_labels)
    human_safety_vals = values_by_labels(human_safety, safety_axes) if human_safety else [0.0] * len(safety_axes)
    model_safety_matrix = np.array([
        [float(all_data[m]["safety"].get(metric, 0.0)) for m in entity_labels]
        for metric in safety_axes
    ]) if has_any_model_safety and human_safety else np.zeros((len(safety_axes), len(entity_labels)))

    fig, axs = plt.subplots(1, 2, figsize=(18, 6))
    fig.suptitle("All Models vs Real Psychologist β€” Absolute Scores", fontsize=18, fontweight="bold", y=0.98)

    # ----------------- Psychometrics Absolute -----------------
    ax_abs_p = axs[0]
    x = np.arange(len(psych_axes))

    # bars per group = Recommended + Human + N models
    n_models = len(entity_labels)
    total_bars = 2 + n_models
    group_width = 0.9
    bar_width = group_width / total_bars
    start = -group_width / 2

    # Recommended bars (hatched)
    rec_vals = values_by_labels(RECOMMENDED, psych_axes)
    rec_offset = start + bar_width * 0.5
    ax_abs_p.bar(
        x + rec_offset, rec_vals, width=bar_width, label="Recommended",
        edgecolor="#222222", facecolor="none", hatch="//", linewidth=1.2
    )

    # Human bars
    human_offset = start + bar_width * 1.5
    ax_abs_p.bar(x + human_offset, human_psych_vals, width=bar_width, label=human_label, color="#ff0000", alpha=0.9)

    # Model bars
    y_max_psy = max([*human_psych_vals, *rec_vals]) if (human_psych_vals or rec_vals) else 0
    for i, m in enumerate(entity_labels):
        offs = start + bar_width * (i + 2.5)
        vals = model_psych_matrix[:, i]
        y_max_psy = max(y_max_psy, float(np.nanmax(vals)) if vals.size else 0)
        ax_abs_p.bar(x + offs, vals, width=bar_width, label=m, color=colors.get(m, "#1f77b4"), alpha=0.9)

    ax_abs_p.set_xticks(x)
    ax_abs_p.set_xticklabels(psych_axes, rotation=15, ha="right")
    ax_abs_p.set_ylabel("Score")
    ax_abs_p.set_ylim(0, y_max_psy * 1.15 if y_max_psy > 0 else 1)
    ax_abs_p.set_title("Psychometrics β€” Absolute")
    ax_abs_p.grid(axis="y", alpha=0.3)
    ax_abs_p.legend(ncol=2, frameon=False, bbox_to_anchor=(1.0, 1.15))

    # ----------------- Safety Absolute -----------------
    ax_abs_s = axs[1]
    x_s = np.arange(len(safety_axes))

    # bars per group = Recommended + Human + N models
    total_bars_s = 2 + len(entity_labels)
    group_width_s = 0.9
    bar_width_s = group_width_s / total_bars_s
    start_s = -group_width_s / 2

    # Recommended safety target = 10 for each key
    rec_safety_vals = [10.0] * len(safety_axes)
    rec_offset_s = start_s + bar_width_s * 0.5
    ax_abs_s.bar(
        x_s + rec_offset_s, rec_safety_vals, width=bar_width_s, label="Ideal Safety",
        edgecolor="#222222", facecolor="none", hatch="//", linewidth=1.2
    )

    # Human bars
    human_offset_s = start_s + bar_width_s * 1.5
    ax_abs_s.bar(x_s + human_offset_s, human_safety_vals, width=bar_width_s, label=human_label, color="#ff0000", alpha=0.9)

    # Models
    if has_any_model_safety and human_safety:
        for i, m in enumerate(entity_labels):
            offs = start_s + bar_width_s * (i + 2.5)
            vals = model_safety_matrix[:, i]
            ax_abs_s.bar(x_s + offs, vals, width=bar_width_s, label=m, color=colors.get(m, "#1f77b4"), alpha=0.9)

    ax_abs_s.set_xticks(x_s)
    ax_abs_s.set_xticklabels(["Guidelines", "Referral", "Consistency", "Resources", "Empowerment"], rotation=15, ha="right")
    ax_abs_s.set_ylabel("0–10")
    ax_abs_s.set_ylim(0, 10)
    ax_abs_s.set_title("Safety β€” Absolute")
    ax_abs_s.grid(axis="y", alpha=0.3)
    ax_abs_s.legend(ncol=2, frameon=False, bbox_to_anchor=(1.0, 1.15))

    plt.tight_layout()
    if save_path:
        Path(save_path).parent.mkdir(parents=True, exist_ok=True)
        fig.savefig(save_path, dpi=300, bbox_inches="tight", facecolor="white")
        print(f"[info] Saved absolute-only comparison to {save_path}")
    plt.show()

# -----------------
# FINAL POLYGON ACCURACY (Similarity-to-Human, 0–100)
# -----------------
def calculate_similarity_scores(all_data, human_label="Real Psychologist", max_score=100):
    human_data = all_data.get(human_label, {}) or {}
    human_psych = human_data.get("psychometrics", {}) or {}
    human_safety = human_data.get("safety", {}) or {}

    similarity_scores = {}
    SAFETY_SCALE_MAX = 10.0
    PSYCH_SCALE_MAX = 100.0
    RQ_RATIO_MAX = 5.0

    def scale_max(metric_name: str) -> float:
        if metric_name in SAFETY_KEYS:
            return SAFETY_SCALE_MAX
        if metric_name == "R/Q ratio":
            return RQ_RATIO_MAX
        return PSYCH_SCALE_MAX

    for model_name, data in all_data.items():
        if model_name == human_label:
            continue
        model_psych = data.get("psychometrics", {}) or {}
        model_safety = data.get("safety", {}) or {}

        model_sim = {}

        for metric in RECOMMENDED.keys():
            if metric in model_psych and metric in human_psych:
                m = float(model_psych[metric])
                h = float(human_psych[metric])
                smax = scale_max(metric)
                sim = max_score * (1 - (abs(m - h) / smax))
                model_sim[metric] = max(0, min(max_score, sim))

        for metric in SAFETY_KEYS:
            if metric in model_safety and metric in human_safety:
                m = float(model_safety[metric])
                h = float(human_safety[metric])
                smax = scale_max(metric)
                sim = max_score * (1 - (abs(m - h) / smax))
                model_sim[metric] = max(0, min(max_score, sim))

        if model_sim:
            similarity_scores[model_name] = model_sim

    return similarity_scores

def render_final_similarity_polygon(report_configs=REPORT_CONFIGS, save_path: str = "./radar_outputs/FINAL_similarity_polygon.png"):
    """

    One polygon radar: 10 axes total (5 psych + 5 safety), values are 0–100 similarity to the human baseline.

    Higher = closer to human. All models overlaid on the same axes.

    """
    all_data, colors = build_all_data(report_configs)
    sim = calculate_similarity_scores(all_data)

    if not sim:
        print("[warn] No similarity scores; need human + at least one model with overlapping metrics.")
        return

    # Fixed unified axis order: 5 psych + 5 safety
    axes_labels_full = list(RECOMMENDED.keys()) + SAFETY_KEYS

    # Shorten labels for readability
    def short(lbl: str) -> str:
        s = lbl
        s = s.replace("% ", "")
        s = s.replace("Open Questions", "Open Q")
        s = s.replace("Complex Reflections", "Complex R")
        s = s.replace("MI-Consistent", "MI Consist")
        s = s.replace("Change Talk", "Change Talk")
        s = s.replace("R/Q ratio", "R/Q")
        s = s.replace("Q1_guidelines_adherence", "Guidelines")
        s = s.replace("Q2_referral_triage", "Referral")
        s = s.replace("Q3_consistency", "Consistency")
        s = s.replace("Q4_resources", "Resources")
        s = s.replace("Q5_empowerment", "Empowerment")
        return s

    labels = [short(x) for x in axes_labels_full]
    N = len(axes_labels_full)
    angles = _make_angles(N)

    fig = plt.figure(figsize=(8, 6))
    ax = plt.subplot(1, 1, 1, polar=True)
    fig.suptitle("Final Polygon Accuracy β€” Similarity to Real Psychologist (0–100)", fontsize=16, fontweight="bold", y=0.98)

    ax.set_theta_offset(math.pi / 2)
    ax.set_theta_direction(-1)
    ax.set_xticks(angles[:-1])
    ax.set_xticklabels(labels, fontsize=10)
    ax.set_ylim(0, 100)
    ax.grid(True, alpha=0.3)

    # Reference rings
    circle_angles = np.linspace(0, 2 * math.pi, 360)
    for ref_val in [25, 50, 75, 90]:
        lw = 2.0 if ref_val >= 75 else 1.2
        ax.plot(circle_angles, [ref_val] * 360, linestyle="--", linewidth=lw, color="#aaaaaa", alpha=0.65)

    # Plot each model
    for model_name, data in all_data.items():
        if model_name == "Real Psychologist":
            continue
        scores = sim.get(model_name, {})
        vals = [float(scores.get(k, 0.0)) for k in axes_labels_full]
        closed = _as_closed(vals)
        color = REPORT_CONFIGS.get(model_name, {}).get("color", "#1f77b4")
        ax.fill(angles, closed, alpha=0.15, color=color)
        ax.plot(angles, closed, linewidth=2.2, label=f"{model_name}", color=color, alpha=0.95)
        ax.scatter(angles[:-1], vals, s=36, color=color, alpha=0.9, zorder=5)

    ax.legend(loc="upper right", bbox_to_anchor=(1.3, 1.08), frameon=False, fontsize=9)

    # Footer helper
    fig.text(0.02, 0.02,
             "Scale: higher is better. 90+ excellent, 75+ good, 50+ fair.",
             fontsize=9, va="bottom",
             bbox=dict(boxstyle="round,pad=0.45", facecolor="whitesmoke", alpha=0.9))
    plt.tight_layout()

    if save_path:
        Path(save_path).parent.mkdir(parents=True, exist_ok=True)
        plt.savefig(save_path, dpi=300, bbox_inches="tight", facecolor="white")
        print(f"[info] Saved final similarity polygon to {save_path}")

    plt.show()

# -----------------
# RESULTS TABLE (absolute + similarity) β†’ CSV + PNG
# -----------------
def _short_label(lbl: str) -> str:
    s = lbl
    s = s.replace("% ", "")
    s = s.replace("Open Questions", "Open Q")
    s = s.replace("Complex Reflections", "Complex R")
    s = s.replace("MI-Consistent", "MI Consist")
    s = s.replace("Change Talk", "Change Talk")
    s = s.replace("R/Q ratio", "R/Q")
    s = s.replace("Q1_guidelines_adherence", "Guidelines")
    s = s.replace("Q2_referral_triage", "Referral")
    s = s.replace("Q3_consistency", "Consistency")
    s = s.replace("Q4_resources", "Resources")
    s = s.replace("Q5_empowerment", "Empowerment")
    return s

def build_results_dataframes(report_configs=REPORT_CONFIGS):
    """

    Returns:

      absolute_df: rows = metrics (psych + safety), cols = all entities (human + models)

      similarity_df: rows = metrics, cols = models (0–100 similarity to human)

    """
    all_data, _ = build_all_data(report_configs)

    # Unified metric order
    metrics = list(RECOMMENDED.keys()) + SAFETY_KEYS

    # Absolute values table
    abs_cols = []
    abs_col_data = []
    for entity in all_data.keys():
        combined = {}
        combined.update(all_data[entity].get("psychometrics", {}) or {})
        combined.update(all_data[entity].get("safety", {}) or {})
        abs_cols.append(entity)
        abs_col_data.append([float(combined.get(m, np.nan)) for m in metrics])

    absolute_df = pd.DataFrame(
        data=np.array(abs_col_data).T,
        index=metrics,
        columns=abs_cols
    )

    # Similarity table (0–100)
    sim = calculate_similarity_scores(all_data)
    if sim:
        sim_cols = []
        sim_col_data = []
        for model_name in sim.keys():
            sim_cols.append(model_name)
            sim_col_data.append([float(sim[model_name].get(m, np.nan)) for m in metrics])
        similarity_df = pd.DataFrame(
            data=np.array(sim_col_data).T,
            index=metrics,
            columns=sim_cols
        )
    else:
        similarity_df = pd.DataFrame(index=metrics)

    # Round for readability
    absolute_df = absolute_df.round(2)
    similarity_df = similarity_df.round(1)

    return absolute_df, similarity_df

def render_results_table(

    report_configs=REPORT_CONFIGS,

    save_path_png: str = "./radar_outputs/RESULTS_table.png",

    save_path_csv: str = "./radar_outputs/RESULTS_table.csv",

    include_similarity: bool = True

):
    """

    Renders a single figure containing a table:

      - Absolute scores for all entities (human + models)

      - If include_similarity=True, appends similarity-to-human columns (with ' (sim)' suffix)



    Also exports a CSV with the same data.

    """
    absolute_df, similarity_df = build_results_dataframes(report_configs)

    # Build combined table
    if include_similarity and not similarity_df.empty:
        sim_renamed = similarity_df.add_suffix(" (sim)")
        combined_df = absolute_df.join(sim_renamed, how="left")
    else:
        combined_df = absolute_df.copy()

    # Pretty row labels
    combined_df.index = [_short_label(x) for x in combined_df.index]

    # Export CSV
    out_dir = Path(save_path_png).parent
    out_dir.mkdir(parents=True, exist_ok=True)
    combined_df.to_csv(save_path_csv, encoding="utf-8")
    print(f"[info] Saved results CSV to {save_path_csv}")

    # Render matplotlib table
    n_rows, n_cols = combined_df.shape

    # Heuristic sizing: wider for more columns, taller for more rows
    fig_w = min(2 + 0.85 * n_cols, 28)         # cap so it doesn't become ridiculous
    fig_h = min(2 + 0.55 * n_rows, 32)

    fig, ax = plt.subplots(figsize=(fig_w, fig_h))
    ax.axis("off")

    title = "Model Results β€” Absolute Scores"
    if include_similarity and not similarity_df.empty:
        title += " + Similarity-to-Human (0–100)"
    fig.suptitle(title, fontsize=16, fontweight="bold", y=0.995)

    # Convert DataFrame to table
    tbl = ax.table(
        cellText=combined_df.fillna("").values,
        rowLabels=combined_df.index.tolist(),
        colLabels=combined_df.columns.tolist(),
        cellLoc="center",
        loc="center"
    )

    # Styling
    tbl.auto_set_font_size(False)
    tbl.set_fontsize(9)
    # Increase row height slightly for readability
    tbl.scale(1.0, 1.15)

    # Header bold-ish
    for (row, col), cell in tbl.get_celld().items():
        if row == 0 or col == -1:
            # Matplotlib tables index headers differently; this keeps it simple
            pass
        # Shade header row and first column labels
        if row == 0:
            cell.set_facecolor("#f2f2f2")
            cell.set_edgecolor("#c0c0c0")
            cell.set_linewidth(1.0)

    # Light grid effect
    for cell in tbl.get_celld().values():
        cell.set_edgecolor("#dddddd")
        cell.set_linewidth(0.5)

    plt.tight_layout()
    fig.savefig(save_path_png, dpi=300, bbox_inches="tight", facecolor="white")
    print(f"[info] Saved results table figure to {save_path_png}")
    plt.show()

# -----------------
# MAIN
# -----------------
if __name__ == "__main__":
    render_unified_absolute_only(REPORT_CONFIGS, save_path="./radar_outputs/ALL_MODELS_absolute.png")
    render_final_similarity_polygon(REPORT_CONFIGS, save_path="./radar_outputs/FINAL_similarity_polygon.png")
    render_results_table(REPORT_CONFIGS,
                         save_path_png="./radar_outputs/RESULTS_table.png",
                         save_path_csv="./radar_outputs/RESULTS_table.csv",
                         include_similarity=True)