from fix_int8 import fix_pytorch_int8 fix_pytorch_int8() # import subprocess # result = subprocess.run(['git', 'clone', 'https://huggingface.co/KumaTea/twitter-int8', 'model'], capture_output=True, text=True) # print(result.stdout) # Credit: # https://huggingface.co/spaces/ljsabc/Fujisaki/blob/main/app.py import torch import logging import gradio as gr from transformers import AutoTokenizer, GenerationConfig, AutoModel gr_title = """

KumaGLM Lite

这是另一个 AI Kuma,你可以与他聊天,或者直接在文本框按下Enter

采用 INT4 量化,速度很慢,仅作备用

GitHub Repo: KumaTea/ChatGLM

""" gr_footer = """

本项目基于 ljsabc/Fujisaki ,模型采用 THUDM/chatglm-6b

每天起床第一句!

""" default_start = ["你是谁?", "我是 kuma"] # device = torch.device('cpu') # torch.cuda.current_device = lambda : device logging.basicConfig( format='%(asctime)s %(levelname)-8s %(message)s', level=logging.INFO, datefmt='%m/%d %H:%M:%S') model = AutoModel.from_pretrained( "KumaTea/twitter-int4", trust_remote_code=True, revision="e2aecb2" ).float() # .to(device) tokenizer = AutoTokenizer.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True, revision="4de8efe") # dump a log to ensure everything works well # print(model.peft_config) # We have to use full precision, as some tokens are >65535 model.eval() # print(model) torch.set_default_tensor_type(torch.FloatTensor) def evaluate(context, temperature, top_p, top_k=None): generation_config = GenerationConfig( temperature=temperature, top_p=top_p, # top_k=top_k, #repetition_penalty=1.1, num_beams=1, do_sample=True, ) with torch.no_grad(): # input_text = f"Context: {context}Answer: " input_text = '||'.join(default_start) + '||' input_text += context + '||' logging.info('[API] Incoming request: ' + input_text) ids = tokenizer([input_text], return_tensors="pt") inputs = ids.to("cpu") out = model.generate( **inputs, max_length=224, generation_config=generation_config ) out = out.tolist()[0] decoder_output = tokenizer.decode(out) # out_text = decoder_output.split("Answer: ")[1] out_text = decoder_output logging.info('[API] Result: ' + out_text) return out_text def evaluate_stream(msg, history, temperature, top_p): generation_config = GenerationConfig( temperature=temperature, top_p=top_p, #repetition_penalty=1.1, num_beams=1, do_sample=True, ) if not msg: msg = '……' history.append([msg, ""]) context = '||'.join(default_start) + '||' if len(history) > 4: history.pop(0) for j in range(len(history)): history[j][0] = history[j][0].replace("
", "") # concatenate context for h in history[:-1]: context += h[0] + "||" + h[1] + "||" context += history[-1][0] + "||" context = context.replace(r'
', '') # TODO: Avoid the tokens are too long. CUTOFF = 224 while len(tokenizer.encode(context)) > CUTOFF: # save 15 token size for the answer context = context[15:] h = [] logging.info('[UI] Incoming request: ' + context) for response, h in model.stream_chat(tokenizer, context, h, max_length=CUTOFF, top_p=top_p, temperature=temperature): history[-1][1] = response yield history, "" with gr.Blocks() as demo: gr.HTML(gr_title) # state = gr.State() with gr.Row(): with gr.Column(scale=2): temp = gr.components.Slider(minimum=0, maximum=1.1, value=0.5, label="Temperature", info="温度参数,越高的温度生成的内容越丰富,但是有可能出现语法问题。小的温度也能帮助生成更相关的回答。") top_p = gr.components.Slider(minimum=0.5, maximum=1.0, value=0.8, label="Top-p", info="top-p参数,只输出前p>top-p的文字,越大生成的内容越丰富,但也可能出现语法问题。数字越小似乎上下文的衔接性越好。") #code = gr.Textbox(label="temp_output", info="解码器输出") #top_k = gr.components.Slider(minimum=1, maximum=200, step=1, value=25, label="Top k", # info="top-k参数,下一个输出的文字会从top-k个文字中进行选择,越大生成的内容越丰富,但也可能出现语法问题。数字越小似乎上下文的衔接性越好。") with gr.Column(scale=3): chatbot = gr.Chatbot(label="聊天框", info="") msg = gr.Textbox(label="输入框", placeholder="最近过得怎么样?", info="输入你的内容,按 [Enter] 发送。什么都不填经常会出错。") clear = gr.Button("清除聊天") api_handler = gr.Button("API", visible=False) textbox_for_api = gr.Textbox(visible=False) msg.submit(evaluate_stream, [msg, chatbot, temp, top_p], [chatbot, msg]) clear.click(lambda: None, None, chatbot, queue=False) api_handler.click(evaluate, [textbox_for_api, temp, top_p], [textbox_for_api], api_name='chat') gr.HTML(gr_footer) demo.queue() demo.launch(debug=False)