Spaces:
Running
on
Zero
Running
on
Zero
| import torch | |
| from einops import rearrange | |
| def low_version_attention(query, key, value, attn_bias=None): | |
| scale = 1 / query.shape[-1] ** 0.5 | |
| query = query * scale | |
| attn = torch.matmul(query, key.transpose(-2, -1)) | |
| if attn_bias is not None: | |
| attn = attn + attn_bias | |
| attn = attn.softmax(-1) | |
| return attn @ value | |
| class Attention(torch.nn.Module): | |
| def __init__(self, q_dim, num_heads, head_dim, kv_dim=None, bias_q=False, bias_kv=False, bias_out=False): | |
| super().__init__() | |
| dim_inner = head_dim * num_heads | |
| kv_dim = kv_dim if kv_dim is not None else q_dim | |
| self.num_heads = num_heads | |
| self.head_dim = head_dim | |
| self.to_q = torch.nn.Linear(q_dim, dim_inner, bias=bias_q) | |
| self.to_k = torch.nn.Linear(kv_dim, dim_inner, bias=bias_kv) | |
| self.to_v = torch.nn.Linear(kv_dim, dim_inner, bias=bias_kv) | |
| self.to_out = torch.nn.Linear(dim_inner, q_dim, bias=bias_out) | |
| def interact_with_ipadapter(self, hidden_states, q, ip_k, ip_v, scale=1.0): | |
| batch_size = q.shape[0] | |
| ip_k = ip_k.view(batch_size, -1, self.num_heads, self.head_dim).transpose(1, 2) | |
| ip_v = ip_v.view(batch_size, -1, self.num_heads, self.head_dim).transpose(1, 2) | |
| ip_hidden_states = torch.nn.functional.scaled_dot_product_attention(q, ip_k, ip_v) | |
| hidden_states = hidden_states + scale * ip_hidden_states | |
| return hidden_states | |
| def torch_forward(self, hidden_states, encoder_hidden_states=None, attn_mask=None, ipadapter_kwargs=None, qkv_preprocessor=None): | |
| if encoder_hidden_states is None: | |
| encoder_hidden_states = hidden_states | |
| batch_size = encoder_hidden_states.shape[0] | |
| q = self.to_q(hidden_states) | |
| k = self.to_k(encoder_hidden_states) | |
| v = self.to_v(encoder_hidden_states) | |
| q = q.view(batch_size, -1, self.num_heads, self.head_dim).transpose(1, 2) | |
| k = k.view(batch_size, -1, self.num_heads, self.head_dim).transpose(1, 2) | |
| v = v.view(batch_size, -1, self.num_heads, self.head_dim).transpose(1, 2) | |
| if qkv_preprocessor is not None: | |
| q, k, v = qkv_preprocessor(q, k, v) | |
| hidden_states = torch.nn.functional.scaled_dot_product_attention(q, k, v, attn_mask=attn_mask) | |
| if ipadapter_kwargs is not None: | |
| hidden_states = self.interact_with_ipadapter(hidden_states, q, **ipadapter_kwargs) | |
| hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, self.num_heads * self.head_dim) | |
| hidden_states = hidden_states.to(q.dtype) | |
| hidden_states = self.to_out(hidden_states) | |
| return hidden_states | |
| def xformers_forward(self, hidden_states, encoder_hidden_states=None, attn_mask=None): | |
| if encoder_hidden_states is None: | |
| encoder_hidden_states = hidden_states | |
| q = self.to_q(hidden_states) | |
| k = self.to_k(encoder_hidden_states) | |
| v = self.to_v(encoder_hidden_states) | |
| q = rearrange(q, "b f (n d) -> (b n) f d", n=self.num_heads) | |
| k = rearrange(k, "b f (n d) -> (b n) f d", n=self.num_heads) | |
| v = rearrange(v, "b f (n d) -> (b n) f d", n=self.num_heads) | |
| if attn_mask is not None: | |
| hidden_states = low_version_attention(q, k, v, attn_bias=attn_mask) | |
| else: | |
| import xformers.ops as xops | |
| hidden_states = xops.memory_efficient_attention(q, k, v) | |
| hidden_states = rearrange(hidden_states, "(b n) f d -> b f (n d)", n=self.num_heads) | |
| hidden_states = hidden_states.to(q.dtype) | |
| hidden_states = self.to_out(hidden_states) | |
| return hidden_states | |
| def forward(self, hidden_states, encoder_hidden_states=None, attn_mask=None, ipadapter_kwargs=None, qkv_preprocessor=None): | |
| return self.torch_forward(hidden_states, encoder_hidden_states=encoder_hidden_states, attn_mask=attn_mask, ipadapter_kwargs=ipadapter_kwargs, qkv_preprocessor=qkv_preprocessor) |