Spaces:
Running
on
Zero
Running
on
Zero
| import lightning as pl | |
| from peft import LoraConfig, inject_adapter_in_model | |
| import torch, os | |
| from ..data.simple_text_image import TextImageDataset | |
| from modelscope.hub.api import HubApi | |
| from ..models.utils import load_state_dict | |
| class LightningModelForT2ILoRA(pl.LightningModule): | |
| def __init__( | |
| self, | |
| learning_rate=1e-4, | |
| use_gradient_checkpointing=True, | |
| state_dict_converter=None, | |
| ): | |
| super().__init__() | |
| # Set parameters | |
| self.learning_rate = learning_rate | |
| self.use_gradient_checkpointing = use_gradient_checkpointing | |
| self.state_dict_converter = state_dict_converter | |
| self.lora_alpha = None | |
| def load_models(self): | |
| # This function is implemented in other modules | |
| self.pipe = None | |
| def freeze_parameters(self): | |
| # Freeze parameters | |
| self.pipe.requires_grad_(False) | |
| self.pipe.eval() | |
| self.pipe.denoising_model().train() | |
| def add_lora_to_model(self, model, lora_rank=4, lora_alpha=4, lora_target_modules="to_q,to_k,to_v,to_out", init_lora_weights="gaussian", pretrained_lora_path=None, state_dict_converter=None): | |
| # Add LoRA to UNet | |
| self.lora_alpha = lora_alpha | |
| if init_lora_weights == "kaiming": | |
| init_lora_weights = True | |
| lora_config = LoraConfig( | |
| r=lora_rank, | |
| lora_alpha=lora_alpha, | |
| init_lora_weights=init_lora_weights, | |
| target_modules=lora_target_modules.split(","), | |
| ) | |
| model = inject_adapter_in_model(lora_config, model) | |
| for param in model.parameters(): | |
| # Upcast LoRA parameters into fp32 | |
| if param.requires_grad: | |
| param.data = param.to(torch.float32) | |
| # Lora pretrained lora weights | |
| if pretrained_lora_path is not None: | |
| state_dict = load_state_dict(pretrained_lora_path) | |
| if state_dict_converter is not None: | |
| state_dict = state_dict_converter(state_dict) | |
| missing_keys, unexpected_keys = model.load_state_dict(state_dict, strict=False) | |
| all_keys = [i for i, _ in model.named_parameters()] | |
| num_updated_keys = len(all_keys) - len(missing_keys) | |
| num_unexpected_keys = len(unexpected_keys) | |
| print(f"{num_updated_keys} parameters are loaded from {pretrained_lora_path}. {num_unexpected_keys} parameters are unexpected.") | |
| def training_step(self, batch, batch_idx): | |
| # Data | |
| text, image = batch["text"], batch["image"] | |
| # Prepare input parameters | |
| self.pipe.device = self.device | |
| prompt_emb = self.pipe.encode_prompt(text, positive=True) | |
| if "latents" in batch: | |
| latents = batch["latents"].to(dtype=self.pipe.torch_dtype, device=self.device) | |
| else: | |
| latents = self.pipe.vae_encoder(image.to(dtype=self.pipe.torch_dtype, device=self.device)) | |
| noise = torch.randn_like(latents) | |
| timestep_id = torch.randint(0, self.pipe.scheduler.num_train_timesteps, (1,)) | |
| timestep = self.pipe.scheduler.timesteps[timestep_id].to(self.device) | |
| extra_input = self.pipe.prepare_extra_input(latents) | |
| noisy_latents = self.pipe.scheduler.add_noise(latents, noise, timestep) | |
| training_target = self.pipe.scheduler.training_target(latents, noise, timestep) | |
| # Compute loss | |
| noise_pred = self.pipe.denoising_model()( | |
| noisy_latents, timestep=timestep, **prompt_emb, **extra_input, | |
| use_gradient_checkpointing=self.use_gradient_checkpointing | |
| ) | |
| loss = torch.nn.functional.mse_loss(noise_pred.float(), training_target.float()) | |
| loss = loss * self.pipe.scheduler.training_weight(timestep) | |
| # Record log | |
| self.log("train_loss", loss, prog_bar=True) | |
| return loss | |
| def configure_optimizers(self): | |
| trainable_modules = filter(lambda p: p.requires_grad, self.pipe.denoising_model().parameters()) | |
| optimizer = torch.optim.AdamW(trainable_modules, lr=self.learning_rate) | |
| return optimizer | |
| def on_save_checkpoint(self, checkpoint): | |
| checkpoint.clear() | |
| trainable_param_names = list(filter(lambda named_param: named_param[1].requires_grad, self.pipe.denoising_model().named_parameters())) | |
| trainable_param_names = set([named_param[0] for named_param in trainable_param_names]) | |
| state_dict = self.pipe.denoising_model().state_dict() | |
| lora_state_dict = {} | |
| for name, param in state_dict.items(): | |
| if name in trainable_param_names: | |
| lora_state_dict[name] = param | |
| if self.state_dict_converter is not None: | |
| lora_state_dict = self.state_dict_converter(lora_state_dict, alpha=self.lora_alpha) | |
| checkpoint.update(lora_state_dict) | |
| def add_general_parsers(parser): | |
| parser.add_argument( | |
| "--dataset_path", | |
| type=str, | |
| default=None, | |
| required=True, | |
| help="The path of the Dataset.", | |
| ) | |
| parser.add_argument( | |
| "--output_path", | |
| type=str, | |
| default="./", | |
| help="Path to save the model.", | |
| ) | |
| parser.add_argument( | |
| "--steps_per_epoch", | |
| type=int, | |
| default=500, | |
| help="Number of steps per epoch.", | |
| ) | |
| parser.add_argument( | |
| "--height", | |
| type=int, | |
| default=1024, | |
| help="Image height.", | |
| ) | |
| parser.add_argument( | |
| "--width", | |
| type=int, | |
| default=1024, | |
| help="Image width.", | |
| ) | |
| parser.add_argument( | |
| "--center_crop", | |
| default=False, | |
| action="store_true", | |
| help=( | |
| "Whether to center crop the input images to the resolution. If not set, the images will be randomly" | |
| " cropped. The images will be resized to the resolution first before cropping." | |
| ), | |
| ) | |
| parser.add_argument( | |
| "--random_flip", | |
| default=False, | |
| action="store_true", | |
| help="Whether to randomly flip images horizontally", | |
| ) | |
| parser.add_argument( | |
| "--batch_size", | |
| type=int, | |
| default=1, | |
| help="Batch size (per device) for the training dataloader.", | |
| ) | |
| parser.add_argument( | |
| "--dataloader_num_workers", | |
| type=int, | |
| default=0, | |
| help="Number of subprocesses to use for data loading. 0 means that the data will be loaded in the main process.", | |
| ) | |
| parser.add_argument( | |
| "--precision", | |
| type=str, | |
| default="16-mixed", | |
| choices=["32", "16", "16-mixed", "bf16"], | |
| help="Training precision", | |
| ) | |
| parser.add_argument( | |
| "--learning_rate", | |
| type=float, | |
| default=1e-4, | |
| help="Learning rate.", | |
| ) | |
| parser.add_argument( | |
| "--lora_rank", | |
| type=int, | |
| default=4, | |
| help="The dimension of the LoRA update matrices.", | |
| ) | |
| parser.add_argument( | |
| "--lora_alpha", | |
| type=float, | |
| default=4.0, | |
| help="The weight of the LoRA update matrices.", | |
| ) | |
| parser.add_argument( | |
| "--init_lora_weights", | |
| type=str, | |
| default="kaiming", | |
| choices=["gaussian", "kaiming"], | |
| help="The initializing method of LoRA weight.", | |
| ) | |
| parser.add_argument( | |
| "--use_gradient_checkpointing", | |
| default=False, | |
| action="store_true", | |
| help="Whether to use gradient checkpointing.", | |
| ) | |
| parser.add_argument( | |
| "--accumulate_grad_batches", | |
| type=int, | |
| default=1, | |
| help="The number of batches in gradient accumulation.", | |
| ) | |
| parser.add_argument( | |
| "--training_strategy", | |
| type=str, | |
| default="auto", | |
| choices=["auto", "deepspeed_stage_1", "deepspeed_stage_2", "deepspeed_stage_3"], | |
| help="Training strategy", | |
| ) | |
| parser.add_argument( | |
| "--max_epochs", | |
| type=int, | |
| default=1, | |
| help="Number of epochs.", | |
| ) | |
| parser.add_argument( | |
| "--modelscope_model_id", | |
| type=str, | |
| default=None, | |
| help="Model ID on ModelScope (https://www.modelscope.cn/). The model will be uploaded to ModelScope automatically if you provide a Model ID.", | |
| ) | |
| parser.add_argument( | |
| "--modelscope_access_token", | |
| type=str, | |
| default=None, | |
| help="Access key on ModelScope (https://www.modelscope.cn/). Required if you want to upload the model to ModelScope.", | |
| ) | |
| parser.add_argument( | |
| "--pretrained_lora_path", | |
| type=str, | |
| default=None, | |
| help="Pretrained LoRA path. Required if the training is resumed.", | |
| ) | |
| parser.add_argument( | |
| "--use_swanlab", | |
| default=False, | |
| action="store_true", | |
| help="Whether to use SwanLab logger.", | |
| ) | |
| parser.add_argument( | |
| "--swanlab_mode", | |
| default=None, | |
| help="SwanLab mode (cloud or local).", | |
| ) | |
| return parser | |
| def launch_training_task(model, args): | |
| # dataset and data loader | |
| dataset = TextImageDataset( | |
| args.dataset_path, | |
| steps_per_epoch=args.steps_per_epoch * args.batch_size, | |
| height=args.height, | |
| width=args.width, | |
| center_crop=args.center_crop, | |
| random_flip=args.random_flip | |
| ) | |
| train_loader = torch.utils.data.DataLoader( | |
| dataset, | |
| shuffle=True, | |
| batch_size=args.batch_size, | |
| num_workers=args.dataloader_num_workers | |
| ) | |
| # train | |
| if args.use_swanlab: | |
| from swanlab.integration.pytorch_lightning import SwanLabLogger | |
| swanlab_config = {"UPPERFRAMEWORK": "DiffSynth-Studio"} | |
| swanlab_config.update(vars(args)) | |
| swanlab_logger = SwanLabLogger( | |
| project="diffsynth_studio", | |
| name="diffsynth_studio", | |
| config=swanlab_config, | |
| mode=args.swanlab_mode, | |
| logdir=os.path.join(args.output_path, "swanlog"), | |
| ) | |
| logger = [swanlab_logger] | |
| else: | |
| logger = None | |
| trainer = pl.Trainer( | |
| max_epochs=args.max_epochs, | |
| accelerator="gpu", | |
| devices="auto", | |
| precision=args.precision, | |
| strategy=args.training_strategy, | |
| default_root_dir=args.output_path, | |
| accumulate_grad_batches=args.accumulate_grad_batches, | |
| callbacks=[pl.pytorch.callbacks.ModelCheckpoint(save_top_k=-1)], | |
| logger=logger, | |
| ) | |
| trainer.fit(model=model, train_dataloaders=train_loader) | |
| # Upload models | |
| if args.modelscope_model_id is not None and args.modelscope_access_token is not None: | |
| print(f"Uploading models to modelscope. model_id: {args.modelscope_model_id} local_path: {trainer.log_dir}") | |
| with open(os.path.join(trainer.log_dir, "configuration.json"), "w", encoding="utf-8") as f: | |
| f.write('{"framework":"Pytorch","task":"text-to-image-synthesis"}\n') | |
| api = HubApi() | |
| api.login(args.modelscope_access_token) | |
| api.push_model(model_id=args.modelscope_model_id, model_dir=trainer.log_dir) | |