Spaces:
Running
on
Zero
Running
on
Zero
File size: 2,232 Bytes
080c0c2 d3fea23 1865df9 080c0c2 d3fea23 cd5f616 449b60e d3fea23 12a64aa 080c0c2 12a64aa 080c0c2 954b185 080c0c2 12a64aa 080c0c2 12a64aa 080c0c2 12a64aa 080c0c2 62941eb 080c0c2 12a64aa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 |
---
title: ROSE
emoji: π
colorFrom: blue
colorTo: pink
sdk: gradio
sdk_version: 5.35.0
short_description: 'ROSE: Remove Objects with Side Effects in Videos'
app_file: app.py
pinned: false
---
## Get Started
1. Install ROSE Dependencies
You can follow the [Dependencies and Installation](https://github.com/Kunbyte-AI/ROSE?tab=readme-ov-file#dependencies-and-installation).
3. Install Demo Dependencies
```shell
cd hugging_face/
# install python dependencies
pip3 install -r requirements.txt
# Run the demo
python app.py
```
## Usage Guidance
* Step 1: Upload your video and click the `Get video info` button.
* Step 2:
1. *[Optional]* Specify the tracking period for the currently added mask by dragging the `Track start frame` or `Track end frame`.
2. Click the image on the left to select the mask area.
3. - Click `Add mask` if you are satisfied with the mask, or
- *[Optional]* Click `Clear clicks` if you want to reselect the mask area, or
- *[Optional]* Click `Remove mask` to remove all masks.
4. *[Optional]* Go back to step 2.1 to add another mask.
* Step 3:
1. Click the `Tracking` button to track the masks for the whole video.
2. Then click `Inpainting` to get the inpainting results.
*You can always refer to the `Highlighted Text` box on the page for guidance on the next step!*
## Citation
If you find our repo useful for your research, please consider citing our paper:
```bibtex
@article{miao2025rose,
title={ROSE: Remove Objects with Side Effects in Videos},
author={Miao, Chenxuan and Feng, Yutong and Zeng, Jianshu and Gao, Zixiang and Liu, Hantang and Yan, Yunfeng and Qi, Donglian and Chen, Xi and Wang, Bin and Zhao, Hengshuang},
journal={arXiv preprint arXiv:2508.18633},
year={2025}
}
```
## Acknowledgements
The project harnesses the capabilities from [Track Anything](https://github.com/gaomingqi/Track-Anything), [Segment Anything](https://github.com/facebookresearch/segment-anything) and [Cutie](https://github.com/hkchengrex/Cutie). Also the gradio demo page is based on [ProPainter's huggingface demo page](https://github.com/sczhou/ProPainter/tree/main/web-demos/hugging_face). Thanks for their awesome works.
|