ROSE / app.py
weiyuchoumou526's picture
Update app.py
a18f370 verified
import sys
# sys.path.append("./")
import spaces
import os
import json
import time
import psutil
import argparse
import cv2
import torch
import torchvision
import numpy as np
import gradio as gr
from tools.painter import mask_painter
from track_anything import TrackingAnything
from utils.misc import get_device
from utils.download_util import load_file_from_url
from transformers import AutoTokenizer
from omegaconf import OmegaConf
from torchvision.transforms import functional as TF
from torchvision.utils import save_image
from einops import rearrange
from PIL import Image
from rose.models import AutoencoderKLWan, CLIPModel, WanT5EncoderModel, WanTransformer3DModel
from rose.pipeline import WanFunInpaintPipeline
from diffusers import FlowMatchEulerDiscreteScheduler
def filter_kwargs(cls, kwargs):
import inspect
sig = inspect.signature(cls.__init__)
valid_params = set(sig.parameters.keys()) - {'self', 'cls'}
return {k: v for k, v in kwargs.items() if k in valid_params}
from huggingface_hub import snapshot_download
def download_component_subfolder(repo_id, subfolder):
local_dir = snapshot_download(
repo_id=repo_id,
repo_type="model",
local_dir="ckpt/Wan2.1-Fun-1.3B-InP",
local_dir_use_symlinks=False,
# allow_patterns=[f"{subfolder}/*"]
)
return os.path.join(local_dir, subfolder)
pretrained_model_path = "alibaba-pai/Wan2.1-Fun-1.3B-InP"
transformer_path = "Kunbyte/ROSE"
config_path = "configs/wan2.1/wan_civitai.yaml"
config = OmegaConf.load(config_path)
text_encoder_path = download_component_subfolder("alibaba-pai/Wan2.1-Fun-1.3B-InP", config['text_encoder_kwargs'].get('text_encoder_subpath', 'text_encoder'))
tokenizer_path = download_component_subfolder("alibaba-pai/Wan2.1-Fun-1.3B-InP", config['text_encoder_kwargs'].get('tokenizer_subpath', 'tokenizer'))
image_encoder_path = download_component_subfolder("alibaba-pai/Wan2.1-Fun-1.3B-InP", config['image_encoder_kwargs'].get('image_encoder_subpath', 'image_encoder'))
vae_path = download_component_subfolder("alibaba-pai/Wan2.1-Fun-1.3B-InP", config['vae_kwargs'].get('vae_subpath', 'vae'))
transformer_path = download_component_subfolder("Kunbyte/ROSE", config['transformer_additional_kwargs'].get('transformer_subpath', 'transformer'))
tokenizer= AutoTokenizer.from_pretrained(tokenizer_path)
text_encoder = WanT5EncoderModel.from_pretrained(
text_encoder_path,
additional_kwargs=OmegaConf.to_container(config['text_encoder_kwargs']),
low_cpu_mem_usage=False,
torch_dtype=torch.bfloat16
)
clip_image_encoder = CLIPModel.from_pretrained(image_encoder_path)
vae = AutoencoderKLWan.from_pretrained(
vae_path,
additional_kwargs=OmegaConf.to_container(config['vae_kwargs']),
)
transformer_subpath = config['transformer_additional_kwargs'].get('transformer_subpath', 'transformer')
transformer3d = WanTransformer3DModel.from_pretrained(
transformer_path,
transformer_additional_kwargs=OmegaConf.to_container(config['transformer_additional_kwargs']),
)
noise_scheduler = FlowMatchEulerDiscreteScheduler(
**filter_kwargs(FlowMatchEulerDiscreteScheduler, OmegaConf.to_container(config['scheduler_kwargs']))
)
pipeline = WanFunInpaintPipeline(
vae=vae,
text_encoder=text_encoder,
tokenizer=tokenizer,
transformer=transformer3d,
scheduler=noise_scheduler,
clip_image_encoder=clip_image_encoder
).to("cuda", torch.float16)
def parse_augment():
parser = argparse.ArgumentParser()
parser.add_argument('--device', type=str, default=None)
parser.add_argument('--sam_model_type', type=str, default="vit_h")
parser.add_argument('--port', type=int, default=8000, help="only useful when running gradio applications")
parser.add_argument('--mask_save', default=False)
args = parser.parse_args()
if not args.device:
args.device = str(get_device())
return args
# convert points input to prompt state
def get_prompt(click_state, click_input):
inputs = json.loads(click_input)
points = click_state[0]
labels = click_state[1]
for input in inputs:
points.append(input[:2])
labels.append(input[2])
click_state[0] = points
click_state[1] = labels
prompt = {
"prompt_type":["click"],
"input_point":click_state[0],
"input_label":click_state[1],
"multimask_output":"True",
}
return prompt
@spaces.GPU
# extract frames from upload video
def get_frames_from_video(video_input, video_state):
"""
Args:
video_path:str
timestamp:float64
Return
[[0:nearest_frame], [nearest_frame:], nearest_frame]
"""
video_path = video_input
frames = []
user_name = time.time()
operation_log = [("[Must Do]", "Click image"), (": Video uploaded! Try to click the image shown in step2 to add masks.\n", None)]
try:
cap = cv2.VideoCapture(video_path)
fps = cap.get(cv2.CAP_PROP_FPS)
while cap.isOpened():
ret, frame = cap.read()
if ret == True:
current_memory_usage = psutil.virtual_memory().percent
frames.append(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
if current_memory_usage > 90:
operation_log = [("Memory usage is too high (>90%). Stop the video extraction. Please reduce the video resolution or frame rate.", "Error")]
print("Memory usage is too high (>90%). Please reduce the video resolution or frame rate.")
break
else:
break
except (OSError, TypeError, ValueError, KeyError, SyntaxError) as e:
print("read_frame_source:{} error. {}\n".format(video_path, str(e)))
image_size = (frames[0].shape[0],frames[0].shape[1])
# initialize video_state
video_state = {
"user_name": user_name,
"video_name": os.path.split(video_path)[-1],
"origin_images": frames,
"painted_images": frames.copy(),
"masks": [np.zeros((frames[0].shape[0],frames[0].shape[1]), np.uint8)]*len(frames),
"logits": [None]*len(frames),
"select_frame_number": 0,
"fps": fps
}
video_info = "Video Name: {},\nFPS: {},\nTotal Frames: {},\nImage Size:{}".format(video_state["video_name"], round(video_state["fps"], 0), len(frames), image_size)
model.samcontroler.sam_controler.reset_image()
model.samcontroler.sam_controler.set_image(video_state["origin_images"][0])
return video_state, video_info, video_state["origin_images"][0], gr.update(visible=True, maximum=len(frames), value=1), gr.update(visible=True, maximum=len(frames), value=len(frames)), \
gr.update(visible=True), gr.update(visible=True), \
gr.update(visible=True), gr.update(visible=True),\
gr.update(visible=True), gr.update(visible=True), \
gr.update(visible=True), gr.update(visible=True), \
gr.update(visible=True), gr.update(visible=True), \
gr.update(visible=True), gr.update(visible=True, choices=[], value=[]), \
gr.update(visible=True, value=operation_log), gr.update(visible=True, value=operation_log)
# get the select frame from gradio slider
def select_template(image_selection_slider, video_state, interactive_state, mask_dropdown):
# images = video_state[1]
image_selection_slider -= 1
video_state["select_frame_number"] = image_selection_slider
# once select a new template frame, set the image in sam
model.samcontroler.sam_controler.reset_image()
model.samcontroler.sam_controler.set_image(video_state["origin_images"][image_selection_slider])
operation_log = [("",""), ("Select tracking start frame {}. Try to click the image to add masks for tracking.".format(image_selection_slider),"Normal")]
return video_state["painted_images"][image_selection_slider], video_state, interactive_state, operation_log, operation_log
# set the tracking end frame
def get_end_number(track_pause_number_slider, video_state, interactive_state):
interactive_state["track_end_number"] = track_pause_number_slider
operation_log = [("",""),("Select tracking finish frame {}.Try to click the image to add masks for tracking.".format(track_pause_number_slider),"Normal")]
return video_state["painted_images"][track_pause_number_slider],interactive_state, operation_log, operation_log
@spaces.GPU
# use sam to get the mask
def sam_refine(video_state, point_prompt, click_state, interactive_state, evt:gr.SelectData):
"""
Args:
template_frame: PIL.Image
point_prompt: flag for positive or negative button click
click_state: [[points], [labels]]
"""
if point_prompt == "Positive":
coordinate = "[[{},{},1]]".format(evt.index[0], evt.index[1])
interactive_state["positive_click_times"] += 1
else:
coordinate = "[[{},{},0]]".format(evt.index[0], evt.index[1])
interactive_state["negative_click_times"] += 1
# prompt for sam model
model.samcontroler.sam_controler.reset_image()
model.samcontroler.sam_controler.set_image(video_state["origin_images"][video_state["select_frame_number"]])
prompt = get_prompt(click_state=click_state, click_input=coordinate)
mask, logit, painted_image = model.first_frame_click(
image=video_state["origin_images"][video_state["select_frame_number"]],
points=np.array(prompt["input_point"]),
labels=np.array(prompt["input_label"]),
multimask=prompt["multimask_output"],
)
video_state["masks"][video_state["select_frame_number"]] = mask
video_state["logits"][video_state["select_frame_number"]] = logit
video_state["painted_images"][video_state["select_frame_number"]] = painted_image
operation_log = [("[Must Do]", "Add mask"), (": add the current displayed mask for video segmentation.\n", None),
("[Optional]", "Remove mask"), (": remove all added masks.\n", None),
("[Optional]", "Clear clicks"), (": clear current displayed mask.\n", None),
("[Optional]", "Click image"), (": Try to click the image shown in step2 if you want to generate more masks.\n", None)]
return painted_image, video_state, interactive_state, operation_log, operation_log
@spaces.GPU
def add_multi_mask(video_state, interactive_state, mask_dropdown):
try:
mask = video_state["masks"][video_state["select_frame_number"]]
interactive_state["multi_mask"]["masks"].append(mask)
interactive_state["multi_mask"]["mask_names"].append("mask_{:03d}".format(len(interactive_state["multi_mask"]["masks"])))
mask_dropdown.append("mask_{:03d}".format(len(interactive_state["multi_mask"]["masks"])))
select_frame, _, _ = show_mask(video_state, interactive_state, mask_dropdown)
operation_log = [("",""),("Added a mask, use the mask select for target tracking or inpainting.","Normal")]
except:
operation_log = [("Please click the image in step2 to generate masks.", "Error"), ("","")]
return interactive_state, gr.update(choices=interactive_state["multi_mask"]["mask_names"], value=mask_dropdown), select_frame, [[],[]], operation_log, operation_log
def clear_click(video_state, click_state):
click_state = [[],[]]
template_frame = video_state["origin_images"][video_state["select_frame_number"]]
operation_log = [("",""), ("Cleared points history and refresh the image.","Normal")]
return template_frame, click_state, operation_log, operation_log
def remove_multi_mask(interactive_state, mask_dropdown):
interactive_state["multi_mask"]["mask_names"]= []
interactive_state["multi_mask"]["masks"] = []
operation_log = [("",""), ("Remove all masks. Try to add new masks","Normal")]
return interactive_state, gr.update(choices=[],value=[]), operation_log, operation_log
@spaces.GPU
def show_mask(video_state, interactive_state, mask_dropdown):
mask_dropdown.sort()
select_frame = video_state["origin_images"][video_state["select_frame_number"]]
for i in range(len(mask_dropdown)):
mask_number = int(mask_dropdown[i].split("_")[1]) - 1
mask = interactive_state["multi_mask"]["masks"][mask_number]
select_frame = mask_painter(select_frame, mask.astype('uint8'), mask_color=mask_number+2)
operation_log = [("",""), ("Added masks {}. If you want to do the inpainting with current masks, please go to step3, and click the Tracking button first and then Inpainting button.".format(mask_dropdown),"Normal")]
return select_frame, operation_log, operation_log
@spaces.GPU
# tracking vos
def vos_tracking_video(video_state, interactive_state, mask_dropdown):
operation_log = [("",""), ("Tracking finished! Try to click the Inpainting button to get the inpainting result.","Normal")]
model.cutie.clear_memory()
if interactive_state["track_end_number"]:
following_frames = video_state["origin_images"][video_state["select_frame_number"]:interactive_state["track_end_number"]]
else:
following_frames = video_state["origin_images"][video_state["select_frame_number"]:]
if interactive_state["multi_mask"]["masks"]:
if len(mask_dropdown) == 0:
mask_dropdown = ["mask_001"]
mask_dropdown.sort()
template_mask = interactive_state["multi_mask"]["masks"][int(mask_dropdown[0].split("_")[1]) - 1] * (int(mask_dropdown[0].split("_")[1]))
for i in range(1,len(mask_dropdown)):
mask_number = int(mask_dropdown[i].split("_")[1]) - 1
template_mask = np.clip(template_mask+interactive_state["multi_mask"]["masks"][mask_number]*(mask_number+1), 0, mask_number+1)
video_state["masks"][video_state["select_frame_number"]]= template_mask
else:
template_mask = video_state["masks"][video_state["select_frame_number"]]
fps = float(video_state["fps"])
# operation error
if len(np.unique(template_mask))==1:
template_mask[0][0]=1
operation_log = [("Please add at least one mask to track by clicking the image in step2.","Error"), ("","")]
# return video_output, video_state, interactive_state, operation_error
masks, logits, painted_images = model.generator(images=following_frames, template_mask=template_mask)
# clear GPU memory
model.cutie.clear_memory()
if interactive_state["track_end_number"]:
video_state["masks"][video_state["select_frame_number"]:interactive_state["track_end_number"]] = masks
video_state["logits"][video_state["select_frame_number"]:interactive_state["track_end_number"]] = logits
video_state["painted_images"][video_state["select_frame_number"]:interactive_state["track_end_number"]] = painted_images
else:
video_state["masks"][video_state["select_frame_number"]:] = masks
video_state["logits"][video_state["select_frame_number"]:] = logits
video_state["painted_images"][video_state["select_frame_number"]:] = painted_images
video_output = generate_video_from_frames(video_state["painted_images"], output_path="./result/track/{}".format(video_state["video_name"]), fps=fps) # import video_input to name the output video
interactive_state["inference_times"] += 1
print("For generating this tracking result, inference times: {}, click times: {}, positive: {}, negative: {}".format(interactive_state["inference_times"],
interactive_state["positive_click_times"]+interactive_state["negative_click_times"],
interactive_state["positive_click_times"],
interactive_state["negative_click_times"]))
#### shanggao code for mask save
if interactive_state["mask_save"]:
if not os.path.exists('./result/mask/{}'.format(video_state["video_name"].split('.')[0])):
os.makedirs('./result/mask/{}'.format(video_state["video_name"].split('.')[0]))
i = 0
print("save mask")
for mask in video_state["masks"]:
np.save(os.path.join('./result/mask/{}'.format(video_state["video_name"].split('.')[0]), '{:05d}.npy'.format(i)), mask)
i+=1
# save_mask(video_state["masks"], video_state["video_name"])
#### shanggao code for mask save
return video_output, video_state, interactive_state, operation_log, operation_log
@spaces.GPU(duration=180)
def inpaint_video(video_state, *_):
operation_log = [("", ""), ("Inpainting finished!", "Normal")]
# import pdb;pdb.set_trace()
frames = video_state["origin_images"]
masks = video_state["masks"]
# masks = masks * 255
fps = int(video_state["fps"])
total_frames = len(frames)
target_frame_count = (total_frames - 1) // 16 * 16 + 1
frames = frames[:target_frame_count]
masks = masks[:target_frame_count]
frames_resized = [cv2.resize(frame, (720, 480), interpolation=cv2.INTER_CUBIC) for frame in frames]
masks_resized = [cv2.resize(mask, (720, 480), interpolation=cv2.INTER_CUBIC) for mask in masks]
with torch.no_grad():
video_tensor = torch.stack([TF.to_tensor(Image.fromarray(f)) for f in frames_resized], dim=1).unsqueeze(0).to("cuda", torch.float16)
mask_tensor = torch.stack([TF.to_tensor(Image.fromarray(m*255)) for m in masks_resized], dim=1).unsqueeze(0).to("cuda", torch.float16)
#video_tensor = torch.stack([torch.from_numpy(f).float() for f in frames_resized], dim=1).unsqueeze(0).to("cuda", torch.bfloat16)
#mask_tensor = torch.stack([torch.from_numpy(m).float() for m in masks_resized], dim=1).unsqueeze(0).to("cuda", torch.bfloat16)
output = pipeline(
prompt="",
video=video_tensor,
mask_video=mask_tensor,
num_frames=video_tensor.shape[2],
num_inference_steps=50
).videos
output = output.clamp(0, 1).cpu()
output_np = (output[0].permute(1, 2, 3, 0).numpy() * 255).astype(np.uint8)
output_path = f"./result/inpaint/{video_state['video_name']}"
os.makedirs(os.path.dirname(output_path), exist_ok=True)
torchvision.io.write_video(output_path, torch.from_numpy(output_np), fps=fps, video_codec="libx264")
return output_path, operation_log, operation_log
@spaces.GPU
# generate video after vos inference
def generate_video_from_frames(frames, output_path, fps=30):
"""
Generates a video from a list of frames.
Args:
frames (list of numpy arrays): The frames to include in the video.
output_path (str): The path to save the generated video.
fps (int, optional): The frame rate of the output video. Defaults to 30.
"""
frames = torch.from_numpy(np.asarray(frames))
if not os.path.exists(os.path.dirname(output_path)):
os.makedirs(os.path.dirname(output_path))
fps = int(fps)
# import pdb;pdb.set_trace()
torchvision.io.write_video(output_path, frames, fps=fps, video_codec="libx264")
return output_path
@spaces.GPU
def restart():
operation_log = [("",""), ("Try to upload your video and click the Get video info button to get started!", "Normal")]
return {
"user_name": "",
"video_name": "",
"origin_images": None,
"painted_images": None,
"masks": None,
"inpaint_masks": None,
"logits": None,
"select_frame_number": 0,
"fps": 30
}, {
"inference_times": 0,
"negative_click_times" : 0,
"positive_click_times": 0,
"mask_save": args.mask_save,
"multi_mask": {
"mask_names": [],
"masks": []
},
"track_end_number": None,
}, [[],[]], None, None, None, \
gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False),\
gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), \
gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), \
gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), "", \
gr.update(visible=True, value=operation_log), gr.update(visible=False, value=operation_log)
# args, defined in track_anything.py
args = parse_augment()
pretrain_model_url = 'https://github.com/sczhou/ProPainter/releases/download/v0.1.0/'
sam_checkpoint_url_dict = {
'vit_h': "https://dl.fbaipublicfiles.com/segment_anything/sam_vit_h_4b8939.pth",
'vit_l': "https://dl.fbaipublicfiles.com/segment_anything/sam_vit_l_0b3195.pth",
'vit_b': "https://dl.fbaipublicfiles.com/segment_anything/sam_vit_b_01ec64.pth"
}
checkpoint_fodler = os.path.join('.', 'weights')
sam_checkpoint = load_file_from_url(sam_checkpoint_url_dict[args.sam_model_type], checkpoint_fodler)
cutie_checkpoint = load_file_from_url(os.path.join(pretrain_model_url, 'cutie-base-mega.pth'), checkpoint_fodler)
# initialize sam, cutie, propainter models
model = TrackingAnything(sam_checkpoint, cutie_checkpoint, args)
title = r"""<h1 align="center">ROSE: Remove Objects with Side Effects in Videos</h1>"""
description = r"""
<center></center>
<b>Official Gradio demo</b> for <a href='https://github.com/Kunbyte-AI/ROSE' target='_blank'><b>Remove Objects with Side Effects in Videos</b></a>.<br>
🔥 ROSE is a robust inpainting algorithm.<br>
🤗 Try to drop your video, add the masks and get the the inpainting results!<br>
"""
css = """
.gradio-container {width: 85% !important; margin: 0 auto !important;}
.gr-monochrome-group {border-radius: 5px !important; border: revert-layer !important; border-width: 2px !important; color: black !important}
button {border-radius: 8px !important;}
.add_button {background-color: #4CAF50 !important;}
.remove_button {background-color: #f44336 !important;}
.mask_button_group {gap: 10px !important;}
.video {height: 300px !important;}
.image {height: 300px !important;}
.video .wrap.svelte-lcpz3o {display: flex !important; align-items: center !important; justify-content: center !important;}
.video .wrap.svelte-lcpz3o > :first-child {height: 100% !important;}
.margin_center {width: 50% !important; margin: auto !important;}
.jc_center {justify-content: center !important;}
body {
display: flex;
justify-content: center;
align-items: center;
min-height: 100vh;
margin: 0;
}
"""
with gr.Blocks(theme=gr.themes.Monochrome(), css=css) as iface:
click_state = gr.State([[],[]])
interactive_state = gr.State({
"inference_times": 0,
"negative_click_times" : 0,
"positive_click_times": 0,
"mask_save": args.mask_save,
"multi_mask": {
"mask_names": [],
"masks": []
},
"track_end_number": None,
}
)
video_state = gr.State(
{
"user_name": "",
"video_name": "",
"origin_images": None,
"painted_images": None,
"masks": None,
"inpaint_masks": None,
"logits": None,
"select_frame_number": 0,
"fps": 30
}
)
gr.Markdown(title)
gr.Markdown(description)
with gr.Column():
# input video
gr.Markdown("## Step1: Upload video")
with gr.Row(equal_height=True):
with gr.Column(scale=2):
video_input = gr.Video(elem_classes="video")
extract_frames_button = gr.Button(value="Get video info", interactive=True, variant="primary")
with gr.Column(scale=2):
run_status = gr.HighlightedText(value=[("",""), ("Try to upload your video and click the Get video info button to get started!", "Normal")],
color_map={"Normal": "green", "Error": "red", "Clear clicks": "gray", "Add mask": "green", "Remove mask": "red"})
video_info = gr.Textbox(label="Video Info")
# add masks
step2_title = gr.Markdown("---\n## Step2: Add masks", visible=False)
with gr.Row(equal_height=True):
with gr.Column(scale=2):
template_frame = gr.Image(type="pil",interactive=True, elem_id="template_frame", visible=False, elem_classes="image")
image_selection_slider = gr.Slider(minimum=1, maximum=100, step=1, value=1, label="Track start frame", visible=False)
track_pause_number_slider = gr.Slider(minimum=1, maximum=100, step=1, value=1, label="Track end frame", visible=False)
with gr.Column(scale=2, elem_classes="jc_center"):
run_status2 = gr.HighlightedText(value=[("",""), ("Try to upload your video and click the Get video info button to get started!", "Normal")],
color_map={"Normal": "green", "Error": "red", "Clear clicks": "gray", "Add mask": "green", "Remove mask": "red"})
with gr.Row():
with gr.Column(scale=2, elem_classes="mask_button_group"):
clear_button_click = gr.Button(value="Clear clicks", interactive=True, visible=False)
remove_mask_button = gr.Button(value="Remove mask", interactive=True, visible=False, elem_classes="remove_button")
Add_mask_button = gr.Button(value="Add mask", interactive=True, visible=False, elem_classes="add_button")
point_prompt = gr.Radio(
choices=["Positive", "Negative"],
value="Positive",
label="Point prompt",
interactive=True,
visible=False,
min_width=100,
scale=1)
mask_dropdown = gr.Dropdown(multiselect=True, value=[], label="Mask selection", info=".", visible=False)
# output video
step3_title = gr.Markdown("---\n## Step3: Track masks and get the inpainting result", visible=False)
with gr.Row(equal_height=True):
with gr.Column(scale=2):
tracking_video_output = gr.Video(visible=False, elem_classes="video")
tracking_video_predict_button = gr.Button(value="1. Tracking", visible=False, elem_classes="margin_center")
with gr.Column(scale=2):
inpaiting_video_output = gr.Video(visible=False, elem_classes="video")
inpaint_video_predict_button = gr.Button(value="2. Inpainting", visible=False, elem_classes="margin_center")
# first step: get the video information
extract_frames_button.click(
fn=get_frames_from_video,
inputs=[
video_input, video_state
],
outputs=[video_state, video_info, template_frame,
image_selection_slider, track_pause_number_slider,point_prompt, clear_button_click, Add_mask_button, template_frame,
tracking_video_predict_button, tracking_video_output, inpaiting_video_output, remove_mask_button, inpaint_video_predict_button, step2_title, step3_title,mask_dropdown, run_status, run_status2]
)
# second step: select images from slider
image_selection_slider.release(fn=select_template,
inputs=[image_selection_slider, video_state, interactive_state],
outputs=[template_frame, video_state, interactive_state, run_status, run_status2], api_name="select_image")
track_pause_number_slider.release(fn=get_end_number,
inputs=[track_pause_number_slider, video_state, interactive_state],
outputs=[template_frame, interactive_state, run_status, run_status2], api_name="end_image")
# click select image to get mask using sam
template_frame.select(
fn=sam_refine,
inputs=[video_state, point_prompt, click_state, interactive_state],
outputs=[template_frame, video_state, interactive_state, run_status, run_status2]
)
# add different mask
Add_mask_button.click(
fn=add_multi_mask,
inputs=[video_state, interactive_state, mask_dropdown],
outputs=[interactive_state, mask_dropdown, template_frame, click_state, run_status, run_status2]
)
remove_mask_button.click(
fn=remove_multi_mask,
inputs=[interactive_state, mask_dropdown],
outputs=[interactive_state, mask_dropdown, run_status, run_status2]
)
# tracking video from select image and mask
tracking_video_predict_button.click(
fn=vos_tracking_video,
inputs=[video_state, interactive_state, mask_dropdown],
outputs=[tracking_video_output, video_state, interactive_state, run_status, run_status2]
)
# inpaint video from select image and mask
inpaint_video_predict_button.click(
fn=inpaint_video,
#inputs=[video_state, resize_ratio_number, dilate_radius_number, raft_iter_number, subvideo_length_number, neighbor_length_number, ref_stride_number, mask_dropdown],
inputs=[video_state, mask_dropdown],
outputs=[inpaiting_video_output, run_status, run_status2]
)
# click to get mask
mask_dropdown.change(
fn=show_mask,
inputs=[video_state, interactive_state, mask_dropdown],
outputs=[template_frame, run_status, run_status2]
)
# clear input
video_input.change(
fn=restart,
inputs=[],
outputs=[
video_state,
interactive_state,
click_state,
tracking_video_output, inpaiting_video_output,
template_frame,
tracking_video_predict_button, image_selection_slider , track_pause_number_slider,point_prompt, clear_button_click,
Add_mask_button, template_frame, tracking_video_predict_button, tracking_video_output, inpaiting_video_output, remove_mask_button,inpaint_video_predict_button, step2_title, step3_title, mask_dropdown, video_info, run_status, run_status2
],
queue=False,
show_progress=False)
video_input.clear(
fn=restart,
inputs=[],
outputs=[
video_state,
interactive_state,
click_state,
tracking_video_output, inpaiting_video_output,
template_frame,
tracking_video_predict_button, image_selection_slider , track_pause_number_slider,point_prompt, clear_button_click,
Add_mask_button, template_frame, tracking_video_predict_button, tracking_video_output, inpaiting_video_output, remove_mask_button,inpaint_video_predict_button, step2_title, step3_title, mask_dropdown, video_info, run_status, run_status2
],
queue=False,
show_progress=False)
# points clear
clear_button_click.click(
fn = clear_click,
inputs = [video_state, click_state,],
outputs = [template_frame,click_state, run_status, run_status2],
)
# set example
gr.Markdown("## Examples")
gr.Examples(
examples=[os.path.join(os.path.dirname(__file__), "./test_sample/", test_sample) for test_sample in ["test-sample0.mp4", "test-sample1.mp4", "test-sample2.mp4", "test-sample3.mp4", "test-sample4.mp4"]],
inputs=[video_input],
)
# gr.Markdown(article)
# iface.queue(concurrency_count=1)
iface.queue()
iface.launch(debug=True, share=True)