Spaces:
Running
on
Zero
Running
on
Zero
| import sys | |
| # sys.path.append("./") | |
| import spaces | |
| import os | |
| import json | |
| import time | |
| import psutil | |
| import argparse | |
| import cv2 | |
| import torch | |
| import torchvision | |
| import numpy as np | |
| import gradio as gr | |
| from tools.painter import mask_painter | |
| from track_anything import TrackingAnything | |
| from utils.misc import get_device | |
| from utils.download_util import load_file_from_url | |
| from transformers import AutoTokenizer | |
| from omegaconf import OmegaConf | |
| from torchvision.transforms import functional as TF | |
| from torchvision.utils import save_image | |
| from einops import rearrange | |
| from PIL import Image | |
| from rose.models import AutoencoderKLWan, CLIPModel, WanT5EncoderModel, WanTransformer3DModel | |
| from rose.pipeline import WanFunInpaintPipeline | |
| from diffusers import FlowMatchEulerDiscreteScheduler | |
| def filter_kwargs(cls, kwargs): | |
| import inspect | |
| sig = inspect.signature(cls.__init__) | |
| valid_params = set(sig.parameters.keys()) - {'self', 'cls'} | |
| return {k: v for k, v in kwargs.items() if k in valid_params} | |
| from huggingface_hub import snapshot_download | |
| def download_component_subfolder(repo_id, subfolder): | |
| local_dir = snapshot_download( | |
| repo_id=repo_id, | |
| repo_type="model", | |
| local_dir="ckpt/Wan2.1-Fun-1.3B-InP", | |
| local_dir_use_symlinks=False, | |
| # allow_patterns=[f"{subfolder}/*"] | |
| ) | |
| return os.path.join(local_dir, subfolder) | |
| pretrained_model_path = "alibaba-pai/Wan2.1-Fun-1.3B-InP" | |
| transformer_path = "Kunbyte/ROSE" | |
| config_path = "configs/wan2.1/wan_civitai.yaml" | |
| config = OmegaConf.load(config_path) | |
| text_encoder_path = download_component_subfolder("alibaba-pai/Wan2.1-Fun-1.3B-InP", config['text_encoder_kwargs'].get('text_encoder_subpath', 'text_encoder')) | |
| tokenizer_path = download_component_subfolder("alibaba-pai/Wan2.1-Fun-1.3B-InP", config['text_encoder_kwargs'].get('tokenizer_subpath', 'tokenizer')) | |
| image_encoder_path = download_component_subfolder("alibaba-pai/Wan2.1-Fun-1.3B-InP", config['image_encoder_kwargs'].get('image_encoder_subpath', 'image_encoder')) | |
| vae_path = download_component_subfolder("alibaba-pai/Wan2.1-Fun-1.3B-InP", config['vae_kwargs'].get('vae_subpath', 'vae')) | |
| transformer_path = download_component_subfolder("Kunbyte/ROSE", config['transformer_additional_kwargs'].get('transformer_subpath', 'transformer')) | |
| tokenizer= AutoTokenizer.from_pretrained(tokenizer_path) | |
| text_encoder = WanT5EncoderModel.from_pretrained( | |
| text_encoder_path, | |
| additional_kwargs=OmegaConf.to_container(config['text_encoder_kwargs']), | |
| low_cpu_mem_usage=False, | |
| torch_dtype=torch.bfloat16 | |
| ) | |
| clip_image_encoder = CLIPModel.from_pretrained(image_encoder_path) | |
| vae = AutoencoderKLWan.from_pretrained( | |
| vae_path, | |
| additional_kwargs=OmegaConf.to_container(config['vae_kwargs']), | |
| ) | |
| transformer_subpath = config['transformer_additional_kwargs'].get('transformer_subpath', 'transformer') | |
| transformer3d = WanTransformer3DModel.from_pretrained( | |
| transformer_path, | |
| transformer_additional_kwargs=OmegaConf.to_container(config['transformer_additional_kwargs']), | |
| ) | |
| noise_scheduler = FlowMatchEulerDiscreteScheduler( | |
| **filter_kwargs(FlowMatchEulerDiscreteScheduler, OmegaConf.to_container(config['scheduler_kwargs'])) | |
| ) | |
| pipeline = WanFunInpaintPipeline( | |
| vae=vae, | |
| text_encoder=text_encoder, | |
| tokenizer=tokenizer, | |
| transformer=transformer3d, | |
| scheduler=noise_scheduler, | |
| clip_image_encoder=clip_image_encoder | |
| ).to("cuda", torch.float16) | |
| def parse_augment(): | |
| parser = argparse.ArgumentParser() | |
| parser.add_argument('--device', type=str, default=None) | |
| parser.add_argument('--sam_model_type', type=str, default="vit_h") | |
| parser.add_argument('--port', type=int, default=8000, help="only useful when running gradio applications") | |
| parser.add_argument('--mask_save', default=False) | |
| args = parser.parse_args() | |
| if not args.device: | |
| args.device = str(get_device()) | |
| return args | |
| # convert points input to prompt state | |
| def get_prompt(click_state, click_input): | |
| inputs = json.loads(click_input) | |
| points = click_state[0] | |
| labels = click_state[1] | |
| for input in inputs: | |
| points.append(input[:2]) | |
| labels.append(input[2]) | |
| click_state[0] = points | |
| click_state[1] = labels | |
| prompt = { | |
| "prompt_type":["click"], | |
| "input_point":click_state[0], | |
| "input_label":click_state[1], | |
| "multimask_output":"True", | |
| } | |
| return prompt | |
| # extract frames from upload video | |
| def get_frames_from_video(video_input, video_state): | |
| """ | |
| Args: | |
| video_path:str | |
| timestamp:float64 | |
| Return | |
| [[0:nearest_frame], [nearest_frame:], nearest_frame] | |
| """ | |
| video_path = video_input | |
| frames = [] | |
| user_name = time.time() | |
| operation_log = [("[Must Do]", "Click image"), (": Video uploaded! Try to click the image shown in step2 to add masks.\n", None)] | |
| try: | |
| cap = cv2.VideoCapture(video_path) | |
| fps = cap.get(cv2.CAP_PROP_FPS) | |
| while cap.isOpened(): | |
| ret, frame = cap.read() | |
| if ret == True: | |
| current_memory_usage = psutil.virtual_memory().percent | |
| frames.append(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)) | |
| if current_memory_usage > 90: | |
| operation_log = [("Memory usage is too high (>90%). Stop the video extraction. Please reduce the video resolution or frame rate.", "Error")] | |
| print("Memory usage is too high (>90%). Please reduce the video resolution or frame rate.") | |
| break | |
| else: | |
| break | |
| except (OSError, TypeError, ValueError, KeyError, SyntaxError) as e: | |
| print("read_frame_source:{} error. {}\n".format(video_path, str(e))) | |
| image_size = (frames[0].shape[0],frames[0].shape[1]) | |
| # initialize video_state | |
| video_state = { | |
| "user_name": user_name, | |
| "video_name": os.path.split(video_path)[-1], | |
| "origin_images": frames, | |
| "painted_images": frames.copy(), | |
| "masks": [np.zeros((frames[0].shape[0],frames[0].shape[1]), np.uint8)]*len(frames), | |
| "logits": [None]*len(frames), | |
| "select_frame_number": 0, | |
| "fps": fps | |
| } | |
| video_info = "Video Name: {},\nFPS: {},\nTotal Frames: {},\nImage Size:{}".format(video_state["video_name"], round(video_state["fps"], 0), len(frames), image_size) | |
| model.samcontroler.sam_controler.reset_image() | |
| model.samcontroler.sam_controler.set_image(video_state["origin_images"][0]) | |
| return video_state, video_info, video_state["origin_images"][0], gr.update(visible=True, maximum=len(frames), value=1), gr.update(visible=True, maximum=len(frames), value=len(frames)), \ | |
| gr.update(visible=True), gr.update(visible=True), \ | |
| gr.update(visible=True), gr.update(visible=True),\ | |
| gr.update(visible=True), gr.update(visible=True), \ | |
| gr.update(visible=True), gr.update(visible=True), \ | |
| gr.update(visible=True), gr.update(visible=True), \ | |
| gr.update(visible=True), gr.update(visible=True, choices=[], value=[]), \ | |
| gr.update(visible=True, value=operation_log), gr.update(visible=True, value=operation_log) | |
| # get the select frame from gradio slider | |
| def select_template(image_selection_slider, video_state, interactive_state, mask_dropdown): | |
| # images = video_state[1] | |
| image_selection_slider -= 1 | |
| video_state["select_frame_number"] = image_selection_slider | |
| # once select a new template frame, set the image in sam | |
| model.samcontroler.sam_controler.reset_image() | |
| model.samcontroler.sam_controler.set_image(video_state["origin_images"][image_selection_slider]) | |
| operation_log = [("",""), ("Select tracking start frame {}. Try to click the image to add masks for tracking.".format(image_selection_slider),"Normal")] | |
| return video_state["painted_images"][image_selection_slider], video_state, interactive_state, operation_log, operation_log | |
| # set the tracking end frame | |
| def get_end_number(track_pause_number_slider, video_state, interactive_state): | |
| interactive_state["track_end_number"] = track_pause_number_slider | |
| operation_log = [("",""),("Select tracking finish frame {}.Try to click the image to add masks for tracking.".format(track_pause_number_slider),"Normal")] | |
| return video_state["painted_images"][track_pause_number_slider],interactive_state, operation_log, operation_log | |
| # use sam to get the mask | |
| def sam_refine(video_state, point_prompt, click_state, interactive_state, evt:gr.SelectData): | |
| """ | |
| Args: | |
| template_frame: PIL.Image | |
| point_prompt: flag for positive or negative button click | |
| click_state: [[points], [labels]] | |
| """ | |
| if point_prompt == "Positive": | |
| coordinate = "[[{},{},1]]".format(evt.index[0], evt.index[1]) | |
| interactive_state["positive_click_times"] += 1 | |
| else: | |
| coordinate = "[[{},{},0]]".format(evt.index[0], evt.index[1]) | |
| interactive_state["negative_click_times"] += 1 | |
| # prompt for sam model | |
| model.samcontroler.sam_controler.reset_image() | |
| model.samcontroler.sam_controler.set_image(video_state["origin_images"][video_state["select_frame_number"]]) | |
| prompt = get_prompt(click_state=click_state, click_input=coordinate) | |
| mask, logit, painted_image = model.first_frame_click( | |
| image=video_state["origin_images"][video_state["select_frame_number"]], | |
| points=np.array(prompt["input_point"]), | |
| labels=np.array(prompt["input_label"]), | |
| multimask=prompt["multimask_output"], | |
| ) | |
| video_state["masks"][video_state["select_frame_number"]] = mask | |
| video_state["logits"][video_state["select_frame_number"]] = logit | |
| video_state["painted_images"][video_state["select_frame_number"]] = painted_image | |
| operation_log = [("[Must Do]", "Add mask"), (": add the current displayed mask for video segmentation.\n", None), | |
| ("[Optional]", "Remove mask"), (": remove all added masks.\n", None), | |
| ("[Optional]", "Clear clicks"), (": clear current displayed mask.\n", None), | |
| ("[Optional]", "Click image"), (": Try to click the image shown in step2 if you want to generate more masks.\n", None)] | |
| return painted_image, video_state, interactive_state, operation_log, operation_log | |
| def add_multi_mask(video_state, interactive_state, mask_dropdown): | |
| try: | |
| mask = video_state["masks"][video_state["select_frame_number"]] | |
| interactive_state["multi_mask"]["masks"].append(mask) | |
| interactive_state["multi_mask"]["mask_names"].append("mask_{:03d}".format(len(interactive_state["multi_mask"]["masks"]))) | |
| mask_dropdown.append("mask_{:03d}".format(len(interactive_state["multi_mask"]["masks"]))) | |
| select_frame, _, _ = show_mask(video_state, interactive_state, mask_dropdown) | |
| operation_log = [("",""),("Added a mask, use the mask select for target tracking or inpainting.","Normal")] | |
| except: | |
| operation_log = [("Please click the image in step2 to generate masks.", "Error"), ("","")] | |
| return interactive_state, gr.update(choices=interactive_state["multi_mask"]["mask_names"], value=mask_dropdown), select_frame, [[],[]], operation_log, operation_log | |
| def clear_click(video_state, click_state): | |
| click_state = [[],[]] | |
| template_frame = video_state["origin_images"][video_state["select_frame_number"]] | |
| operation_log = [("",""), ("Cleared points history and refresh the image.","Normal")] | |
| return template_frame, click_state, operation_log, operation_log | |
| def remove_multi_mask(interactive_state, mask_dropdown): | |
| interactive_state["multi_mask"]["mask_names"]= [] | |
| interactive_state["multi_mask"]["masks"] = [] | |
| operation_log = [("",""), ("Remove all masks. Try to add new masks","Normal")] | |
| return interactive_state, gr.update(choices=[],value=[]), operation_log, operation_log | |
| def show_mask(video_state, interactive_state, mask_dropdown): | |
| mask_dropdown.sort() | |
| select_frame = video_state["origin_images"][video_state["select_frame_number"]] | |
| for i in range(len(mask_dropdown)): | |
| mask_number = int(mask_dropdown[i].split("_")[1]) - 1 | |
| mask = interactive_state["multi_mask"]["masks"][mask_number] | |
| select_frame = mask_painter(select_frame, mask.astype('uint8'), mask_color=mask_number+2) | |
| operation_log = [("",""), ("Added masks {}. If you want to do the inpainting with current masks, please go to step3, and click the Tracking button first and then Inpainting button.".format(mask_dropdown),"Normal")] | |
| return select_frame, operation_log, operation_log | |
| # tracking vos | |
| def vos_tracking_video(video_state, interactive_state, mask_dropdown): | |
| operation_log = [("",""), ("Tracking finished! Try to click the Inpainting button to get the inpainting result.","Normal")] | |
| model.cutie.clear_memory() | |
| if interactive_state["track_end_number"]: | |
| following_frames = video_state["origin_images"][video_state["select_frame_number"]:interactive_state["track_end_number"]] | |
| else: | |
| following_frames = video_state["origin_images"][video_state["select_frame_number"]:] | |
| if interactive_state["multi_mask"]["masks"]: | |
| if len(mask_dropdown) == 0: | |
| mask_dropdown = ["mask_001"] | |
| mask_dropdown.sort() | |
| template_mask = interactive_state["multi_mask"]["masks"][int(mask_dropdown[0].split("_")[1]) - 1] * (int(mask_dropdown[0].split("_")[1])) | |
| for i in range(1,len(mask_dropdown)): | |
| mask_number = int(mask_dropdown[i].split("_")[1]) - 1 | |
| template_mask = np.clip(template_mask+interactive_state["multi_mask"]["masks"][mask_number]*(mask_number+1), 0, mask_number+1) | |
| video_state["masks"][video_state["select_frame_number"]]= template_mask | |
| else: | |
| template_mask = video_state["masks"][video_state["select_frame_number"]] | |
| fps = float(video_state["fps"]) | |
| # operation error | |
| if len(np.unique(template_mask))==1: | |
| template_mask[0][0]=1 | |
| operation_log = [("Please add at least one mask to track by clicking the image in step2.","Error"), ("","")] | |
| # return video_output, video_state, interactive_state, operation_error | |
| masks, logits, painted_images = model.generator(images=following_frames, template_mask=template_mask) | |
| # clear GPU memory | |
| model.cutie.clear_memory() | |
| if interactive_state["track_end_number"]: | |
| video_state["masks"][video_state["select_frame_number"]:interactive_state["track_end_number"]] = masks | |
| video_state["logits"][video_state["select_frame_number"]:interactive_state["track_end_number"]] = logits | |
| video_state["painted_images"][video_state["select_frame_number"]:interactive_state["track_end_number"]] = painted_images | |
| else: | |
| video_state["masks"][video_state["select_frame_number"]:] = masks | |
| video_state["logits"][video_state["select_frame_number"]:] = logits | |
| video_state["painted_images"][video_state["select_frame_number"]:] = painted_images | |
| video_output = generate_video_from_frames(video_state["painted_images"], output_path="./result/track/{}".format(video_state["video_name"]), fps=fps) # import video_input to name the output video | |
| interactive_state["inference_times"] += 1 | |
| print("For generating this tracking result, inference times: {}, click times: {}, positive: {}, negative: {}".format(interactive_state["inference_times"], | |
| interactive_state["positive_click_times"]+interactive_state["negative_click_times"], | |
| interactive_state["positive_click_times"], | |
| interactive_state["negative_click_times"])) | |
| #### shanggao code for mask save | |
| if interactive_state["mask_save"]: | |
| if not os.path.exists('./result/mask/{}'.format(video_state["video_name"].split('.')[0])): | |
| os.makedirs('./result/mask/{}'.format(video_state["video_name"].split('.')[0])) | |
| i = 0 | |
| print("save mask") | |
| for mask in video_state["masks"]: | |
| np.save(os.path.join('./result/mask/{}'.format(video_state["video_name"].split('.')[0]), '{:05d}.npy'.format(i)), mask) | |
| i+=1 | |
| # save_mask(video_state["masks"], video_state["video_name"]) | |
| #### shanggao code for mask save | |
| return video_output, video_state, interactive_state, operation_log, operation_log | |
| def inpaint_video(video_state, *_): | |
| operation_log = [("", ""), ("Inpainting finished!", "Normal")] | |
| # import pdb;pdb.set_trace() | |
| frames = video_state["origin_images"] | |
| masks = video_state["masks"] | |
| # masks = masks * 255 | |
| fps = int(video_state["fps"]) | |
| total_frames = len(frames) | |
| target_frame_count = (total_frames - 1) // 16 * 16 + 1 | |
| frames = frames[:target_frame_count] | |
| masks = masks[:target_frame_count] | |
| frames_resized = [cv2.resize(frame, (720, 480), interpolation=cv2.INTER_CUBIC) for frame in frames] | |
| masks_resized = [cv2.resize(mask, (720, 480), interpolation=cv2.INTER_CUBIC) for mask in masks] | |
| with torch.no_grad(): | |
| video_tensor = torch.stack([TF.to_tensor(Image.fromarray(f)) for f in frames_resized], dim=1).unsqueeze(0).to("cuda", torch.float16) | |
| mask_tensor = torch.stack([TF.to_tensor(Image.fromarray(m*255)) for m in masks_resized], dim=1).unsqueeze(0).to("cuda", torch.float16) | |
| #video_tensor = torch.stack([torch.from_numpy(f).float() for f in frames_resized], dim=1).unsqueeze(0).to("cuda", torch.bfloat16) | |
| #mask_tensor = torch.stack([torch.from_numpy(m).float() for m in masks_resized], dim=1).unsqueeze(0).to("cuda", torch.bfloat16) | |
| output = pipeline( | |
| prompt="", | |
| video=video_tensor, | |
| mask_video=mask_tensor, | |
| num_frames=video_tensor.shape[2], | |
| num_inference_steps=50 | |
| ).videos | |
| output = output.clamp(0, 1).cpu() | |
| output_np = (output[0].permute(1, 2, 3, 0).numpy() * 255).astype(np.uint8) | |
| output_path = f"./result/inpaint/{video_state['video_name']}" | |
| os.makedirs(os.path.dirname(output_path), exist_ok=True) | |
| torchvision.io.write_video(output_path, torch.from_numpy(output_np), fps=fps, video_codec="libx264") | |
| return output_path, operation_log, operation_log | |
| # generate video after vos inference | |
| def generate_video_from_frames(frames, output_path, fps=30): | |
| """ | |
| Generates a video from a list of frames. | |
| Args: | |
| frames (list of numpy arrays): The frames to include in the video. | |
| output_path (str): The path to save the generated video. | |
| fps (int, optional): The frame rate of the output video. Defaults to 30. | |
| """ | |
| frames = torch.from_numpy(np.asarray(frames)) | |
| if not os.path.exists(os.path.dirname(output_path)): | |
| os.makedirs(os.path.dirname(output_path)) | |
| fps = int(fps) | |
| # import pdb;pdb.set_trace() | |
| torchvision.io.write_video(output_path, frames, fps=fps, video_codec="libx264") | |
| return output_path | |
| def restart(): | |
| operation_log = [("",""), ("Try to upload your video and click the Get video info button to get started!", "Normal")] | |
| return { | |
| "user_name": "", | |
| "video_name": "", | |
| "origin_images": None, | |
| "painted_images": None, | |
| "masks": None, | |
| "inpaint_masks": None, | |
| "logits": None, | |
| "select_frame_number": 0, | |
| "fps": 30 | |
| }, { | |
| "inference_times": 0, | |
| "negative_click_times" : 0, | |
| "positive_click_times": 0, | |
| "mask_save": args.mask_save, | |
| "multi_mask": { | |
| "mask_names": [], | |
| "masks": [] | |
| }, | |
| "track_end_number": None, | |
| }, [[],[]], None, None, None, \ | |
| gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False),\ | |
| gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), \ | |
| gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), \ | |
| gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), "", \ | |
| gr.update(visible=True, value=operation_log), gr.update(visible=False, value=operation_log) | |
| # args, defined in track_anything.py | |
| args = parse_augment() | |
| pretrain_model_url = 'https://github.com/sczhou/ProPainter/releases/download/v0.1.0/' | |
| sam_checkpoint_url_dict = { | |
| 'vit_h': "https://dl.fbaipublicfiles.com/segment_anything/sam_vit_h_4b8939.pth", | |
| 'vit_l': "https://dl.fbaipublicfiles.com/segment_anything/sam_vit_l_0b3195.pth", | |
| 'vit_b': "https://dl.fbaipublicfiles.com/segment_anything/sam_vit_b_01ec64.pth" | |
| } | |
| checkpoint_fodler = os.path.join('.', 'weights') | |
| sam_checkpoint = load_file_from_url(sam_checkpoint_url_dict[args.sam_model_type], checkpoint_fodler) | |
| cutie_checkpoint = load_file_from_url(os.path.join(pretrain_model_url, 'cutie-base-mega.pth'), checkpoint_fodler) | |
| # initialize sam, cutie, propainter models | |
| model = TrackingAnything(sam_checkpoint, cutie_checkpoint, args) | |
| title = r"""<h1 align="center">ROSE: Remove Objects with Side Effects in Videos</h1>""" | |
| description = r""" | |
| <center></center> | |
| <b>Official Gradio demo</b> for <a href='https://github.com/Kunbyte-AI/ROSE' target='_blank'><b>Remove Objects with Side Effects in Videos</b></a>.<br> | |
| 🔥 ROSE is a robust inpainting algorithm.<br> | |
| 🤗 Try to drop your video, add the masks and get the the inpainting results!<br> | |
| """ | |
| css = """ | |
| .gradio-container {width: 85% !important; margin: 0 auto !important;} | |
| .gr-monochrome-group {border-radius: 5px !important; border: revert-layer !important; border-width: 2px !important; color: black !important} | |
| button {border-radius: 8px !important;} | |
| .add_button {background-color: #4CAF50 !important;} | |
| .remove_button {background-color: #f44336 !important;} | |
| .mask_button_group {gap: 10px !important;} | |
| .video {height: 300px !important;} | |
| .image {height: 300px !important;} | |
| .video .wrap.svelte-lcpz3o {display: flex !important; align-items: center !important; justify-content: center !important;} | |
| .video .wrap.svelte-lcpz3o > :first-child {height: 100% !important;} | |
| .margin_center {width: 50% !important; margin: auto !important;} | |
| .jc_center {justify-content: center !important;} | |
| body { | |
| display: flex; | |
| justify-content: center; | |
| align-items: center; | |
| min-height: 100vh; | |
| margin: 0; | |
| } | |
| """ | |
| with gr.Blocks(theme=gr.themes.Monochrome(), css=css) as iface: | |
| click_state = gr.State([[],[]]) | |
| interactive_state = gr.State({ | |
| "inference_times": 0, | |
| "negative_click_times" : 0, | |
| "positive_click_times": 0, | |
| "mask_save": args.mask_save, | |
| "multi_mask": { | |
| "mask_names": [], | |
| "masks": [] | |
| }, | |
| "track_end_number": None, | |
| } | |
| ) | |
| video_state = gr.State( | |
| { | |
| "user_name": "", | |
| "video_name": "", | |
| "origin_images": None, | |
| "painted_images": None, | |
| "masks": None, | |
| "inpaint_masks": None, | |
| "logits": None, | |
| "select_frame_number": 0, | |
| "fps": 30 | |
| } | |
| ) | |
| gr.Markdown(title) | |
| gr.Markdown(description) | |
| with gr.Column(): | |
| # input video | |
| gr.Markdown("## Step1: Upload video") | |
| with gr.Row(equal_height=True): | |
| with gr.Column(scale=2): | |
| video_input = gr.Video(elem_classes="video") | |
| extract_frames_button = gr.Button(value="Get video info", interactive=True, variant="primary") | |
| with gr.Column(scale=2): | |
| run_status = gr.HighlightedText(value=[("",""), ("Try to upload your video and click the Get video info button to get started!", "Normal")], | |
| color_map={"Normal": "green", "Error": "red", "Clear clicks": "gray", "Add mask": "green", "Remove mask": "red"}) | |
| video_info = gr.Textbox(label="Video Info") | |
| # add masks | |
| step2_title = gr.Markdown("---\n## Step2: Add masks", visible=False) | |
| with gr.Row(equal_height=True): | |
| with gr.Column(scale=2): | |
| template_frame = gr.Image(type="pil",interactive=True, elem_id="template_frame", visible=False, elem_classes="image") | |
| image_selection_slider = gr.Slider(minimum=1, maximum=100, step=1, value=1, label="Track start frame", visible=False) | |
| track_pause_number_slider = gr.Slider(minimum=1, maximum=100, step=1, value=1, label="Track end frame", visible=False) | |
| with gr.Column(scale=2, elem_classes="jc_center"): | |
| run_status2 = gr.HighlightedText(value=[("",""), ("Try to upload your video and click the Get video info button to get started!", "Normal")], | |
| color_map={"Normal": "green", "Error": "red", "Clear clicks": "gray", "Add mask": "green", "Remove mask": "red"}) | |
| with gr.Row(): | |
| with gr.Column(scale=2, elem_classes="mask_button_group"): | |
| clear_button_click = gr.Button(value="Clear clicks", interactive=True, visible=False) | |
| remove_mask_button = gr.Button(value="Remove mask", interactive=True, visible=False, elem_classes="remove_button") | |
| Add_mask_button = gr.Button(value="Add mask", interactive=True, visible=False, elem_classes="add_button") | |
| point_prompt = gr.Radio( | |
| choices=["Positive", "Negative"], | |
| value="Positive", | |
| label="Point prompt", | |
| interactive=True, | |
| visible=False, | |
| min_width=100, | |
| scale=1) | |
| mask_dropdown = gr.Dropdown(multiselect=True, value=[], label="Mask selection", info=".", visible=False) | |
| # output video | |
| step3_title = gr.Markdown("---\n## Step3: Track masks and get the inpainting result", visible=False) | |
| with gr.Row(equal_height=True): | |
| with gr.Column(scale=2): | |
| tracking_video_output = gr.Video(visible=False, elem_classes="video") | |
| tracking_video_predict_button = gr.Button(value="1. Tracking", visible=False, elem_classes="margin_center") | |
| with gr.Column(scale=2): | |
| inpaiting_video_output = gr.Video(visible=False, elem_classes="video") | |
| inpaint_video_predict_button = gr.Button(value="2. Inpainting", visible=False, elem_classes="margin_center") | |
| # first step: get the video information | |
| extract_frames_button.click( | |
| fn=get_frames_from_video, | |
| inputs=[ | |
| video_input, video_state | |
| ], | |
| outputs=[video_state, video_info, template_frame, | |
| image_selection_slider, track_pause_number_slider,point_prompt, clear_button_click, Add_mask_button, template_frame, | |
| tracking_video_predict_button, tracking_video_output, inpaiting_video_output, remove_mask_button, inpaint_video_predict_button, step2_title, step3_title,mask_dropdown, run_status, run_status2] | |
| ) | |
| # second step: select images from slider | |
| image_selection_slider.release(fn=select_template, | |
| inputs=[image_selection_slider, video_state, interactive_state], | |
| outputs=[template_frame, video_state, interactive_state, run_status, run_status2], api_name="select_image") | |
| track_pause_number_slider.release(fn=get_end_number, | |
| inputs=[track_pause_number_slider, video_state, interactive_state], | |
| outputs=[template_frame, interactive_state, run_status, run_status2], api_name="end_image") | |
| # click select image to get mask using sam | |
| template_frame.select( | |
| fn=sam_refine, | |
| inputs=[video_state, point_prompt, click_state, interactive_state], | |
| outputs=[template_frame, video_state, interactive_state, run_status, run_status2] | |
| ) | |
| # add different mask | |
| Add_mask_button.click( | |
| fn=add_multi_mask, | |
| inputs=[video_state, interactive_state, mask_dropdown], | |
| outputs=[interactive_state, mask_dropdown, template_frame, click_state, run_status, run_status2] | |
| ) | |
| remove_mask_button.click( | |
| fn=remove_multi_mask, | |
| inputs=[interactive_state, mask_dropdown], | |
| outputs=[interactive_state, mask_dropdown, run_status, run_status2] | |
| ) | |
| # tracking video from select image and mask | |
| tracking_video_predict_button.click( | |
| fn=vos_tracking_video, | |
| inputs=[video_state, interactive_state, mask_dropdown], | |
| outputs=[tracking_video_output, video_state, interactive_state, run_status, run_status2] | |
| ) | |
| # inpaint video from select image and mask | |
| inpaint_video_predict_button.click( | |
| fn=inpaint_video, | |
| #inputs=[video_state, resize_ratio_number, dilate_radius_number, raft_iter_number, subvideo_length_number, neighbor_length_number, ref_stride_number, mask_dropdown], | |
| inputs=[video_state, mask_dropdown], | |
| outputs=[inpaiting_video_output, run_status, run_status2] | |
| ) | |
| # click to get mask | |
| mask_dropdown.change( | |
| fn=show_mask, | |
| inputs=[video_state, interactive_state, mask_dropdown], | |
| outputs=[template_frame, run_status, run_status2] | |
| ) | |
| # clear input | |
| video_input.change( | |
| fn=restart, | |
| inputs=[], | |
| outputs=[ | |
| video_state, | |
| interactive_state, | |
| click_state, | |
| tracking_video_output, inpaiting_video_output, | |
| template_frame, | |
| tracking_video_predict_button, image_selection_slider , track_pause_number_slider,point_prompt, clear_button_click, | |
| Add_mask_button, template_frame, tracking_video_predict_button, tracking_video_output, inpaiting_video_output, remove_mask_button,inpaint_video_predict_button, step2_title, step3_title, mask_dropdown, video_info, run_status, run_status2 | |
| ], | |
| queue=False, | |
| show_progress=False) | |
| video_input.clear( | |
| fn=restart, | |
| inputs=[], | |
| outputs=[ | |
| video_state, | |
| interactive_state, | |
| click_state, | |
| tracking_video_output, inpaiting_video_output, | |
| template_frame, | |
| tracking_video_predict_button, image_selection_slider , track_pause_number_slider,point_prompt, clear_button_click, | |
| Add_mask_button, template_frame, tracking_video_predict_button, tracking_video_output, inpaiting_video_output, remove_mask_button,inpaint_video_predict_button, step2_title, step3_title, mask_dropdown, video_info, run_status, run_status2 | |
| ], | |
| queue=False, | |
| show_progress=False) | |
| # points clear | |
| clear_button_click.click( | |
| fn = clear_click, | |
| inputs = [video_state, click_state,], | |
| outputs = [template_frame,click_state, run_status, run_status2], | |
| ) | |
| # set example | |
| gr.Markdown("## Examples") | |
| gr.Examples( | |
| examples=[os.path.join(os.path.dirname(__file__), "./test_sample/", test_sample) for test_sample in ["test-sample0.mp4", "test-sample1.mp4", "test-sample2.mp4", "test-sample3.mp4", "test-sample4.mp4"]], | |
| inputs=[video_input], | |
| ) | |
| # gr.Markdown(article) | |
| # iface.queue(concurrency_count=1) | |
| iface.queue() | |
| iface.launch(debug=True, share=True) |