Spaces:
Running
on
Zero
Running
on
Zero
| """ | |
| For computing auxiliary outputs for auxiliary losses | |
| """ | |
| from typing import Dict | |
| from omegaconf import DictConfig | |
| import torch | |
| import torch.nn as nn | |
| from tracker.model.group_modules import GConv2d | |
| from tracker.utils.tensor_utils import aggregate | |
| class LinearPredictor(nn.Module): | |
| def __init__(self, x_dim: int, pix_dim: int): | |
| super().__init__() | |
| self.projection = GConv2d(x_dim, pix_dim + 1, kernel_size=1) | |
| def forward(self, pix_feat: torch.Tensor, x: torch.Tensor) -> torch.Tensor: | |
| # pixel_feat: B*pix_dim*H*W | |
| # x: B*num_objects*x_dim*H*W | |
| num_objects = x.shape[1] | |
| x = self.projection(x) | |
| pix_feat = pix_feat.unsqueeze(1).expand(-1, num_objects, -1, -1, -1) | |
| logits = (pix_feat * x[:, :, :-1]).sum(dim=2) + x[:, :, -1] | |
| return logits | |
| class DirectPredictor(nn.Module): | |
| def __init__(self, x_dim: int): | |
| super().__init__() | |
| self.projection = GConv2d(x_dim, 1, kernel_size=1) | |
| def forward(self, x: torch.Tensor) -> torch.Tensor: | |
| # x: B*num_objects*x_dim*H*W | |
| logits = self.projection(x).squeeze(2) | |
| return logits | |
| class AuxComputer(nn.Module): | |
| def __init__(self, cfg: DictConfig): | |
| super().__init__() | |
| use_sensory_aux = cfg.model.aux_loss.sensory.enabled | |
| self.use_query_aux = cfg.model.aux_loss.query.enabled | |
| sensory_dim = cfg.model.sensory_dim | |
| embed_dim = cfg.model.embed_dim | |
| if use_sensory_aux: | |
| self.sensory_aux = LinearPredictor(sensory_dim, embed_dim) | |
| else: | |
| self.sensory_aux = None | |
| def _aggregate_with_selector(self, logits: torch.Tensor, selector: torch.Tensor) -> torch.Tensor: | |
| prob = torch.sigmoid(logits) | |
| if selector is not None: | |
| prob = prob * selector | |
| logits = aggregate(prob, dim=1) | |
| return logits | |
| def forward(self, pix_feat: torch.Tensor, aux_input: Dict[str, torch.Tensor], | |
| selector: torch.Tensor) -> Dict[str, torch.Tensor]: | |
| sensory = aux_input['sensory'] | |
| q_logits = aux_input['q_logits'] | |
| aux_output = {} | |
| aux_output['attn_mask'] = aux_input['attn_mask'] | |
| if self.sensory_aux is not None: | |
| # B*num_objects*H*W | |
| logits = self.sensory_aux(pix_feat, sensory) | |
| aux_output['sensory_logits'] = self._aggregate_with_selector(logits, selector) | |
| if self.use_query_aux: | |
| # B*num_objects*num_levels*H*W | |
| aux_output['q_logits'] = self._aggregate_with_selector( | |
| torch.stack(q_logits, dim=2), | |
| selector.unsqueeze(2) if selector is not None else None) | |
| return aux_output |