Spaces:
Running
on
Zero
Running
on
Zero
| from typing import List, Dict, Optional | |
| from omegaconf import DictConfig | |
| import torch | |
| import torch.nn as nn | |
| import torch.nn.functional as F | |
| from tracker.model.transformer.positional_encoding import PositionalEncoding | |
| # @torch.jit.script | |
| def _weighted_pooling(masks: torch.Tensor, value: torch.Tensor, | |
| logits: torch.Tensor) -> (torch.Tensor, torch.Tensor): | |
| # value: B*num_objects*H*W*value_dim | |
| # logits: B*num_objects*H*W*num_summaries | |
| # masks: B*num_objects*H*W*num_summaries: 1 if allowed | |
| weights = logits.sigmoid() * masks | |
| # B*num_objects*num_summaries*value_dim | |
| sums = torch.einsum('bkhwq,bkhwc->bkqc', weights, value) | |
| # B*num_objects*H*W*num_summaries -> B*num_objects*num_summaries*1 | |
| area = weights.flatten(start_dim=2, end_dim=3).sum(2).unsqueeze(-1) | |
| # B*num_objects*num_summaries*value_dim | |
| return sums, area | |
| class ObjectSummarizer(nn.Module): | |
| def __init__(self, model_cfg: DictConfig): | |
| super().__init__() | |
| this_cfg = model_cfg.object_summarizer | |
| self.value_dim = model_cfg.value_dim | |
| self.embed_dim = this_cfg.embed_dim | |
| self.num_summaries = this_cfg.num_summaries | |
| self.add_pe = this_cfg.add_pe | |
| self.pixel_pe_scale = model_cfg.pixel_pe_scale | |
| self.pixel_pe_temperature = model_cfg.pixel_pe_temperature | |
| if self.add_pe: | |
| self.pos_enc = PositionalEncoding(self.embed_dim, | |
| scale=self.pixel_pe_scale, | |
| temperature=self.pixel_pe_temperature) | |
| self.input_proj = nn.Linear(self.value_dim, self.embed_dim) | |
| self.feature_pred = nn.Sequential( | |
| nn.Linear(self.embed_dim, self.embed_dim), | |
| nn.ReLU(inplace=True), | |
| nn.Linear(self.embed_dim, self.embed_dim), | |
| ) | |
| self.weights_pred = nn.Sequential( | |
| nn.Linear(self.embed_dim, self.embed_dim), | |
| nn.ReLU(inplace=True), | |
| nn.Linear(self.embed_dim, self.num_summaries), | |
| ) | |
| def forward(self, | |
| masks: torch.Tensor, | |
| value: torch.Tensor, | |
| need_weights: bool = False) -> (torch.Tensor, Optional[torch.Tensor]): | |
| # masks: B*num_objects*(H0)*(W0) | |
| # value: B*num_objects*value_dim*H*W | |
| # -> B*num_objects*H*W*value_dim | |
| h, w = value.shape[-2:] | |
| masks = F.interpolate(masks, size=(h, w), mode='area') | |
| masks = masks.unsqueeze(-1) | |
| inv_masks = 1 - masks | |
| repeated_masks = torch.cat([ | |
| masks.expand(-1, -1, -1, -1, self.num_summaries // 2), | |
| inv_masks.expand(-1, -1, -1, -1, self.num_summaries // 2), | |
| ], | |
| dim=-1) | |
| value = value.permute(0, 1, 3, 4, 2) | |
| value = self.input_proj(value) | |
| if self.add_pe: | |
| pe = self.pos_enc(value) | |
| value = value + pe | |
| with torch.cuda.amp.autocast(enabled=False): | |
| value = value.float() | |
| feature = self.feature_pred(value) | |
| logits = self.weights_pred(value) | |
| sums, area = _weighted_pooling(repeated_masks, feature, logits) | |
| summaries = torch.cat([sums, area], dim=-1) | |
| if need_weights: | |
| return summaries, logits | |
| else: | |
| return summaries, None |