weiyuchoumou526 commited on
Commit
c8cafe0
·
1 Parent(s): b9b49ce

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +5 -45
app.py CHANGED
@@ -48,32 +48,15 @@ def download_component_subfolder(repo_id, subfolder):
48
  )
49
  return os.path.join(local_dir, subfolder)
50
 
51
- def download_model_component(repo_id, subpath):
52
- return os.path.join(snapshot_download(
53
- repo_id=repo_id,
54
- repo_type="model",
55
- #local_dir=f"ckpt/{repo_id.replace('/', '--')}",
56
- local_dir="ckpt/ROSE",
57
- local_dir_use_symlinks=False,
58
- ), subpath)
59
-
60
- # pretrained_model_path = "./models/Diffusion_Transformer/Wan2.1-Fun-1.3B-InP"
61
  pretrained_model_path = "alibaba-pai/Wan2.1-Fun-1.3B-InP"
62
  transformer_path = "Kunbyte/ROSE"
63
- # config_path = "configs/wan2.1/wan_civitai.yaml"
64
  config_path = "configs/wan2.1/wan_civitai.yaml"
65
  config = OmegaConf.load(config_path)
66
 
67
- repo_id = "alibaba-pai/Wan2.1-Fun-1.3B-InP"
68
-
69
- text_encoder_path = download_component_subfolder(repo_id, config['text_encoder_kwargs'].get('text_encoder_subpath', 'text_encoder'))
70
- tokenizer_path = download_component_subfolder(repo_id, config['text_encoder_kwargs'].get('tokenizer_subpath', 'tokenizer'))
71
- image_encoder_path = download_component_subfolder(repo_id, config['image_encoder_kwargs'].get('image_encoder_subpath', 'image_encoder'))
72
- vae_path = download_component_subfolder(repo_id, config['vae_kwargs'].get('vae_subpath', 'vae'))
73
- # tokenizer_path = download_model_component("alibaba-pai/Wan2.1-Fun-1.3B-InP", config['text_encoder_kwargs'].get('tokenizer_subpath', 'tokenizer'))
74
- # text_encoder_path = download_model_component("alibaba-pai/Wan2.1-Fun-1.3B-InP", config['text_encoder_kwargs'].get('text_encoder_subpath', 'text_encoder'))
75
- # image_encoder_path = download_model_component("alibaba-pai/Wan2.1-Fun-1.3B-InP", config['image_encoder_kwargs'].get('image_encoder_subpath', 'image_encoder'))
76
- # vae_path = download_model_component("alibaba-pai/Wan2.1-Fun-1.3B-InP", config['vae_kwargs'].get('vae_subpath', 'vae'))
77
  transformer_path = download_component_subfolder("Kunbyte/ROSE", config['transformer_additional_kwargs'].get('transformer_subpath', 'transformer'))
78
 
79
  tokenizer= AutoTokenizer.from_pretrained(tokenizer_path)
@@ -102,30 +85,6 @@ noise_scheduler = FlowMatchEulerDiscreteScheduler(
102
  **filter_kwargs(FlowMatchEulerDiscreteScheduler, OmegaConf.to_container(config['scheduler_kwargs']))
103
  )
104
 
105
-
106
- # tokenizer = AutoTokenizer.from_pretrained(
107
- # os.path.join(pretrained_model_path, config['text_encoder_kwargs'].get('tokenizer_subpath', 'tokenizer')),
108
- # )
109
- # text_encoder = WanT5EncoderModel.from_pretrained(
110
- # os.path.join(pretrained_model_path, config['text_encoder_kwargs'].get('text_encoder_subpath', 'text_encoder')),
111
- # additional_kwargs=OmegaConf.to_container(config['text_encoder_kwargs']),
112
- # low_cpu_mem_usage=True,
113
- # )
114
- # clip_image_encoder = CLIPModel.from_pretrained(
115
- # os.path.join(pretrained_model_path, config['image_encoder_kwargs'].get('image_encoder_subpath', 'image_encoder')),
116
- # )
117
- # vae = AutoencoderKLWan.from_pretrained(
118
- # os.path.join(pretrained_model_path, config['vae_kwargs'].get('vae_subpath', 'vae')),
119
- # additional_kwargs=OmegaConf.to_container(config['vae_kwargs']),
120
- # )
121
- # transformer3d = WanTransformer3DModel.from_pretrained(
122
- # os.path.join(transformer_path, config['transformer_additional_kwargs'].get('transformer_subpath', 'transformer')),
123
- # transformer_additional_kwargs=OmegaConf.to_container(config['transformer_additional_kwargs']),
124
- # )
125
- # noise_scheduler = FlowMatchEulerDiscreteScheduler(
126
- # **filter_kwargs(FlowMatchEulerDiscreteScheduler, OmegaConf.to_container(config['scheduler_kwargs']))
127
- # )
128
-
129
  pipeline = WanFunInpaintPipeline(
130
  vae=vae,
131
  text_encoder=text_encoder,
@@ -167,6 +126,7 @@ def get_prompt(click_state, click_input):
167
  }
168
  return prompt
169
 
 
170
  # extract frames from upload video
171
  def get_frames_from_video(video_input, video_state):
172
  """
 
48
  )
49
  return os.path.join(local_dir, subfolder)
50
 
 
 
 
 
 
 
 
 
 
 
51
  pretrained_model_path = "alibaba-pai/Wan2.1-Fun-1.3B-InP"
52
  transformer_path = "Kunbyte/ROSE"
 
53
  config_path = "configs/wan2.1/wan_civitai.yaml"
54
  config = OmegaConf.load(config_path)
55
 
56
+ text_encoder_path = download_component_subfolder("alibaba-pai/Wan2.1-Fun-1.3B-InP", config['text_encoder_kwargs'].get('text_encoder_subpath', 'text_encoder'))
57
+ tokenizer_path = download_component_subfolder("alibaba-pai/Wan2.1-Fun-1.3B-InP", config['text_encoder_kwargs'].get('tokenizer_subpath', 'tokenizer'))
58
+ image_encoder_path = download_component_subfolder("alibaba-pai/Wan2.1-Fun-1.3B-InP", config['image_encoder_kwargs'].get('image_encoder_subpath', 'image_encoder'))
59
+ vae_path = download_component_subfolder("alibaba-pai/Wan2.1-Fun-1.3B-InP", config['vae_kwargs'].get('vae_subpath', 'vae'))
 
 
 
 
 
 
60
  transformer_path = download_component_subfolder("Kunbyte/ROSE", config['transformer_additional_kwargs'].get('transformer_subpath', 'transformer'))
61
 
62
  tokenizer= AutoTokenizer.from_pretrained(tokenizer_path)
 
85
  **filter_kwargs(FlowMatchEulerDiscreteScheduler, OmegaConf.to_container(config['scheduler_kwargs']))
86
  )
87
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
88
  pipeline = WanFunInpaintPipeline(
89
  vae=vae,
90
  text_encoder=text_encoder,
 
126
  }
127
  return prompt
128
 
129
+ @spaces.GPU
130
  # extract frames from upload video
131
  def get_frames_from_video(video_input, video_state):
132
  """