Spaces:
Running
on
Zero
Running
on
Zero
Commit
·
c8cafe0
1
Parent(s):
b9b49ce
Update app.py
Browse files
app.py
CHANGED
|
@@ -48,32 +48,15 @@ def download_component_subfolder(repo_id, subfolder):
|
|
| 48 |
)
|
| 49 |
return os.path.join(local_dir, subfolder)
|
| 50 |
|
| 51 |
-
def download_model_component(repo_id, subpath):
|
| 52 |
-
return os.path.join(snapshot_download(
|
| 53 |
-
repo_id=repo_id,
|
| 54 |
-
repo_type="model",
|
| 55 |
-
#local_dir=f"ckpt/{repo_id.replace('/', '--')}",
|
| 56 |
-
local_dir="ckpt/ROSE",
|
| 57 |
-
local_dir_use_symlinks=False,
|
| 58 |
-
), subpath)
|
| 59 |
-
|
| 60 |
-
# pretrained_model_path = "./models/Diffusion_Transformer/Wan2.1-Fun-1.3B-InP"
|
| 61 |
pretrained_model_path = "alibaba-pai/Wan2.1-Fun-1.3B-InP"
|
| 62 |
transformer_path = "Kunbyte/ROSE"
|
| 63 |
-
# config_path = "configs/wan2.1/wan_civitai.yaml"
|
| 64 |
config_path = "configs/wan2.1/wan_civitai.yaml"
|
| 65 |
config = OmegaConf.load(config_path)
|
| 66 |
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
image_encoder_path = download_component_subfolder(repo_id, config['image_encoder_kwargs'].get('image_encoder_subpath', 'image_encoder'))
|
| 72 |
-
vae_path = download_component_subfolder(repo_id, config['vae_kwargs'].get('vae_subpath', 'vae'))
|
| 73 |
-
# tokenizer_path = download_model_component("alibaba-pai/Wan2.1-Fun-1.3B-InP", config['text_encoder_kwargs'].get('tokenizer_subpath', 'tokenizer'))
|
| 74 |
-
# text_encoder_path = download_model_component("alibaba-pai/Wan2.1-Fun-1.3B-InP", config['text_encoder_kwargs'].get('text_encoder_subpath', 'text_encoder'))
|
| 75 |
-
# image_encoder_path = download_model_component("alibaba-pai/Wan2.1-Fun-1.3B-InP", config['image_encoder_kwargs'].get('image_encoder_subpath', 'image_encoder'))
|
| 76 |
-
# vae_path = download_model_component("alibaba-pai/Wan2.1-Fun-1.3B-InP", config['vae_kwargs'].get('vae_subpath', 'vae'))
|
| 77 |
transformer_path = download_component_subfolder("Kunbyte/ROSE", config['transformer_additional_kwargs'].get('transformer_subpath', 'transformer'))
|
| 78 |
|
| 79 |
tokenizer= AutoTokenizer.from_pretrained(tokenizer_path)
|
|
@@ -102,30 +85,6 @@ noise_scheduler = FlowMatchEulerDiscreteScheduler(
|
|
| 102 |
**filter_kwargs(FlowMatchEulerDiscreteScheduler, OmegaConf.to_container(config['scheduler_kwargs']))
|
| 103 |
)
|
| 104 |
|
| 105 |
-
|
| 106 |
-
# tokenizer = AutoTokenizer.from_pretrained(
|
| 107 |
-
# os.path.join(pretrained_model_path, config['text_encoder_kwargs'].get('tokenizer_subpath', 'tokenizer')),
|
| 108 |
-
# )
|
| 109 |
-
# text_encoder = WanT5EncoderModel.from_pretrained(
|
| 110 |
-
# os.path.join(pretrained_model_path, config['text_encoder_kwargs'].get('text_encoder_subpath', 'text_encoder')),
|
| 111 |
-
# additional_kwargs=OmegaConf.to_container(config['text_encoder_kwargs']),
|
| 112 |
-
# low_cpu_mem_usage=True,
|
| 113 |
-
# )
|
| 114 |
-
# clip_image_encoder = CLIPModel.from_pretrained(
|
| 115 |
-
# os.path.join(pretrained_model_path, config['image_encoder_kwargs'].get('image_encoder_subpath', 'image_encoder')),
|
| 116 |
-
# )
|
| 117 |
-
# vae = AutoencoderKLWan.from_pretrained(
|
| 118 |
-
# os.path.join(pretrained_model_path, config['vae_kwargs'].get('vae_subpath', 'vae')),
|
| 119 |
-
# additional_kwargs=OmegaConf.to_container(config['vae_kwargs']),
|
| 120 |
-
# )
|
| 121 |
-
# transformer3d = WanTransformer3DModel.from_pretrained(
|
| 122 |
-
# os.path.join(transformer_path, config['transformer_additional_kwargs'].get('transformer_subpath', 'transformer')),
|
| 123 |
-
# transformer_additional_kwargs=OmegaConf.to_container(config['transformer_additional_kwargs']),
|
| 124 |
-
# )
|
| 125 |
-
# noise_scheduler = FlowMatchEulerDiscreteScheduler(
|
| 126 |
-
# **filter_kwargs(FlowMatchEulerDiscreteScheduler, OmegaConf.to_container(config['scheduler_kwargs']))
|
| 127 |
-
# )
|
| 128 |
-
|
| 129 |
pipeline = WanFunInpaintPipeline(
|
| 130 |
vae=vae,
|
| 131 |
text_encoder=text_encoder,
|
|
@@ -167,6 +126,7 @@ def get_prompt(click_state, click_input):
|
|
| 167 |
}
|
| 168 |
return prompt
|
| 169 |
|
|
|
|
| 170 |
# extract frames from upload video
|
| 171 |
def get_frames_from_video(video_input, video_state):
|
| 172 |
"""
|
|
|
|
| 48 |
)
|
| 49 |
return os.path.join(local_dir, subfolder)
|
| 50 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 51 |
pretrained_model_path = "alibaba-pai/Wan2.1-Fun-1.3B-InP"
|
| 52 |
transformer_path = "Kunbyte/ROSE"
|
|
|
|
| 53 |
config_path = "configs/wan2.1/wan_civitai.yaml"
|
| 54 |
config = OmegaConf.load(config_path)
|
| 55 |
|
| 56 |
+
text_encoder_path = download_component_subfolder("alibaba-pai/Wan2.1-Fun-1.3B-InP", config['text_encoder_kwargs'].get('text_encoder_subpath', 'text_encoder'))
|
| 57 |
+
tokenizer_path = download_component_subfolder("alibaba-pai/Wan2.1-Fun-1.3B-InP", config['text_encoder_kwargs'].get('tokenizer_subpath', 'tokenizer'))
|
| 58 |
+
image_encoder_path = download_component_subfolder("alibaba-pai/Wan2.1-Fun-1.3B-InP", config['image_encoder_kwargs'].get('image_encoder_subpath', 'image_encoder'))
|
| 59 |
+
vae_path = download_component_subfolder("alibaba-pai/Wan2.1-Fun-1.3B-InP", config['vae_kwargs'].get('vae_subpath', 'vae'))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 60 |
transformer_path = download_component_subfolder("Kunbyte/ROSE", config['transformer_additional_kwargs'].get('transformer_subpath', 'transformer'))
|
| 61 |
|
| 62 |
tokenizer= AutoTokenizer.from_pretrained(tokenizer_path)
|
|
|
|
| 85 |
**filter_kwargs(FlowMatchEulerDiscreteScheduler, OmegaConf.to_container(config['scheduler_kwargs']))
|
| 86 |
)
|
| 87 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 88 |
pipeline = WanFunInpaintPipeline(
|
| 89 |
vae=vae,
|
| 90 |
text_encoder=text_encoder,
|
|
|
|
| 126 |
}
|
| 127 |
return prompt
|
| 128 |
|
| 129 |
+
@spaces.GPU
|
| 130 |
# extract frames from upload video
|
| 131 |
def get_frames_from_video(video_input, video_state):
|
| 132 |
"""
|