weiyuchoumou526 commited on
Commit
efdf581
·
1 Parent(s): 7e8ec87

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +42 -42
app.py CHANGED
@@ -53,64 +53,64 @@ transformer_path = "Kunbyte/ROSE"
53
  config_path = "./configs/wan2.1/wan_civitai.yaml"
54
  config = OmegaConf.load(config_path)
55
 
56
- repo_id = "alibaba-pai/Wan2.1-Fun-1.3B-InP"
57
 
58
- text_encoder_path = download_component_subfolder(repo_id, config['text_encoder_kwargs'].get('text_encoder_subpath', 'text_encoder'))
59
- tokenizer_path = download_component_subfolder(repo_id, config['text_encoder_kwargs'].get('tokenizer_subpath', 'tokenizer'))
60
- image_encoder_path = download_component_subfolder(repo_id, config['image_encoder_kwargs'].get('image_encoder_subpath', 'image_encoder'))
61
- vae_path = download_component_subfolder(repo_id, config['vae_kwargs'].get('vae_subpath', 'vae'))
62
 
63
- tokenizer = AutoTokenizer.from_pretrained(tokenizer_path)
64
 
65
- text_encoder = WanT5EncoderModel.from_pretrained(
66
- text_encoder_path,
67
- additional_kwargs=OmegaConf.to_container(config['text_encoder_kwargs']),
68
- low_cpu_mem_usage=False,
69
- torch_dtype=torch.bfloat16
70
- )
71
-
72
- clip_image_encoder = CLIPModel.from_pretrained(image_encoder_path)
73
-
74
- vae = AutoencoderKLWan.from_pretrained(
75
- vae_path,
76
- additional_kwargs=OmegaConf.to_container(config['vae_kwargs']),
77
- )
78
-
79
- transformer_subpath = config['transformer_additional_kwargs'].get('transformer_subpath', 'transformer')
80
- transformer3d = WanTransformer3DModel.from_pretrained(
81
- transformer_path,
82
- subfolder=transformer_subpath,
83
- transformer_additional_kwargs=OmegaConf.to_container(config['transformer_additional_kwargs']),
84
- )
85
-
86
- noise_scheduler = FlowMatchEulerDiscreteScheduler(
87
- **filter_kwargs(FlowMatchEulerDiscreteScheduler, OmegaConf.to_container(config['scheduler_kwargs']))
88
- )
89
-
90
-
91
- # tokenizer = AutoTokenizer.from_pretrained(
92
- # os.path.join(pretrained_model_path, config['text_encoder_kwargs'].get('tokenizer_subpath', 'tokenizer')),
93
- # )
94
  # text_encoder = WanT5EncoderModel.from_pretrained(
95
- # os.path.join(pretrained_model_path, config['text_encoder_kwargs'].get('text_encoder_subpath', 'text_encoder')),
96
  # additional_kwargs=OmegaConf.to_container(config['text_encoder_kwargs']),
97
- # low_cpu_mem_usage=True,
98
- # )
99
- # clip_image_encoder = CLIPModel.from_pretrained(
100
- # os.path.join(pretrained_model_path, config['image_encoder_kwargs'].get('image_encoder_subpath', 'image_encoder')),
101
  # )
 
 
 
102
  # vae = AutoencoderKLWan.from_pretrained(
103
- # os.path.join(pretrained_model_path, config['vae_kwargs'].get('vae_subpath', 'vae')),
104
  # additional_kwargs=OmegaConf.to_container(config['vae_kwargs']),
105
  # )
 
 
106
  # transformer3d = WanTransformer3DModel.from_pretrained(
107
- # os.path.join(transformer_path, config['transformer_additional_kwargs'].get('transformer_subpath', 'transformer')),
 
108
  # transformer_additional_kwargs=OmegaConf.to_container(config['transformer_additional_kwargs']),
109
  # )
 
110
  # noise_scheduler = FlowMatchEulerDiscreteScheduler(
111
  # **filter_kwargs(FlowMatchEulerDiscreteScheduler, OmegaConf.to_container(config['scheduler_kwargs']))
112
  # )
113
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
114
  pipeline = WanFunInpaintPipeline(
115
  vae=vae,
116
  text_encoder=text_encoder,
 
53
  config_path = "./configs/wan2.1/wan_civitai.yaml"
54
  config = OmegaConf.load(config_path)
55
 
56
+ # repo_id = "alibaba-pai/Wan2.1-Fun-1.3B-InP"
57
 
58
+ # text_encoder_path = download_component_subfolder(repo_id, config['text_encoder_kwargs'].get('text_encoder_subpath', 'text_encoder'))
59
+ # tokenizer_path = download_component_subfolder(repo_id, config['text_encoder_kwargs'].get('tokenizer_subpath', 'tokenizer'))
60
+ # image_encoder_path = download_component_subfolder(repo_id, config['image_encoder_kwargs'].get('image_encoder_subpath', 'image_encoder'))
61
+ # vae_path = download_component_subfolder(repo_id, config['vae_kwargs'].get('vae_subpath', 'vae'))
62
 
63
+ # tokenizer = AutoTokenizer.from_pretrained(tokenizer_path)
64
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
65
  # text_encoder = WanT5EncoderModel.from_pretrained(
66
+ # text_encoder_path,
67
  # additional_kwargs=OmegaConf.to_container(config['text_encoder_kwargs']),
68
+ # low_cpu_mem_usage=False,
69
+ # torch_dtype=torch.bfloat16
 
 
70
  # )
71
+
72
+ # clip_image_encoder = CLIPModel.from_pretrained(image_encoder_path)
73
+
74
  # vae = AutoencoderKLWan.from_pretrained(
75
+ # vae_path,
76
  # additional_kwargs=OmegaConf.to_container(config['vae_kwargs']),
77
  # )
78
+
79
+ # transformer_subpath = config['transformer_additional_kwargs'].get('transformer_subpath', 'transformer')
80
  # transformer3d = WanTransformer3DModel.from_pretrained(
81
+ # transformer_path,
82
+ # subfolder=transformer_subpath,
83
  # transformer_additional_kwargs=OmegaConf.to_container(config['transformer_additional_kwargs']),
84
  # )
85
+
86
  # noise_scheduler = FlowMatchEulerDiscreteScheduler(
87
  # **filter_kwargs(FlowMatchEulerDiscreteScheduler, OmegaConf.to_container(config['scheduler_kwargs']))
88
  # )
89
 
90
+
91
+ tokenizer = AutoTokenizer.from_pretrained(
92
+ os.path.join(pretrained_model_path, config['text_encoder_kwargs'].get('tokenizer_subpath', 'tokenizer')),
93
+ )
94
+ text_encoder = WanT5EncoderModel.from_pretrained(
95
+ os.path.join(pretrained_model_path, config['text_encoder_kwargs'].get('text_encoder_subpath', 'text_encoder')),
96
+ additional_kwargs=OmegaConf.to_container(config['text_encoder_kwargs']),
97
+ low_cpu_mem_usage=True,
98
+ )
99
+ clip_image_encoder = CLIPModel.from_pretrained(
100
+ os.path.join(pretrained_model_path, config['image_encoder_kwargs'].get('image_encoder_subpath', 'image_encoder')),
101
+ )
102
+ vae = AutoencoderKLWan.from_pretrained(
103
+ os.path.join(pretrained_model_path, config['vae_kwargs'].get('vae_subpath', 'vae')),
104
+ additional_kwargs=OmegaConf.to_container(config['vae_kwargs']),
105
+ )
106
+ transformer3d = WanTransformer3DModel.from_pretrained(
107
+ os.path.join(transformer_path, config['transformer_additional_kwargs'].get('transformer_subpath', 'transformer')),
108
+ transformer_additional_kwargs=OmegaConf.to_container(config['transformer_additional_kwargs']),
109
+ )
110
+ noise_scheduler = FlowMatchEulerDiscreteScheduler(
111
+ **filter_kwargs(FlowMatchEulerDiscreteScheduler, OmegaConf.to_container(config['scheduler_kwargs']))
112
+ )
113
+
114
  pipeline = WanFunInpaintPipeline(
115
  vae=vae,
116
  text_encoder=text_encoder,