Spaces:
Running
Running
| from torchvision import transforms | |
| import torch | |
| def one_d_image_train_aug(to_3_channels=False): | |
| mean, std = (0.1307, 0.1307, 0.1307), (0.3081, 0.3081, 0.3081) | |
| return transforms.Compose([ | |
| transforms.Resize(32), | |
| # transforms.RandomCrop(32, padding=4), | |
| transforms.ToTensor(), | |
| transforms.Lambda((lambda x: torch.cat([x] * 3)) if to_3_channels else (lambda x: x)), | |
| transforms.Normalize(mean, std) | |
| ]) | |
| def one_d_image_test_aug(to_3_channels=False): | |
| mean, std = (0.1307, 0.1307, 0.1307), (0.3081, 0.3081, 0.3081) | |
| return transforms.Compose([ | |
| transforms.Resize(32), | |
| transforms.ToTensor(), | |
| transforms.Lambda((lambda x: torch.cat([x] * 3)) if to_3_channels else (lambda x: x)), | |
| transforms.Normalize(mean, std) | |
| ]) | |
| def cifar_like_image_train_aug(mean=None, std=None): | |
| if mean is None: | |
| mean, std = (0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010) | |
| return transforms.Compose([ | |
| transforms.Resize(40), # NOTE: this is critical!!! or you may crop a small part of an image | |
| transforms.RandomCrop(32, padding=4), | |
| transforms.RandomHorizontalFlip(), | |
| transforms.ToTensor(), | |
| transforms.Normalize(mean, std) | |
| ]) | |
| def cifar_like_image_test_aug(mean=None, std=None): | |
| if mean is None: | |
| mean, std = (0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010) | |
| return transforms.Compose([ | |
| transforms.Resize(32), | |
| transforms.ToTensor(), | |
| transforms.Normalize(mean, std) | |
| ]) | |
| def imagenet_like_image_train_aug(): | |
| mean, std = [0.485, 0.456, 0.406], [0.229, 0.224, 0.225] | |
| return transforms.Compose([ | |
| transforms.Resize((256, 256)), | |
| transforms.RandomCrop((224, 224), padding=4), | |
| transforms.RandomHorizontalFlip(), | |
| transforms.ToTensor(), | |
| transforms.Normalize(mean, std) | |
| ]) | |
| def imagenet_like_image_test_aug(): | |
| mean, std = [0.485, 0.456, 0.406], [0.229, 0.224, 0.225] | |
| return transforms.Compose([ | |
| transforms.Resize((224, 224)), | |
| transforms.ToTensor(), | |
| transforms.Normalize(mean, std) | |
| ]) | |
| def cityscapes_like_image_train_aug(): | |
| return transforms.Compose([ | |
| transforms.Resize((224, 224)), | |
| transforms.ToTensor(), | |
| transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), | |
| ]) | |
| def cityscapes_like_image_test_aug(): | |
| return transforms.Compose([ | |
| transforms.Resize((224, 224)), | |
| transforms.ToTensor(), | |
| transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), | |
| ]) | |
| def cityscapes_like_label_aug(): | |
| import numpy as np | |
| return transforms.Compose([ | |
| transforms.Resize((224, 224)), | |
| transforms.Lambda(lambda x: torch.from_numpy(np.array(x)).long()) | |
| ]) | |
| def pil_image_to_tensor(img_size=224): | |
| return transforms.Compose([ | |
| transforms.Resize((img_size, img_size)), | |
| transforms.ToTensor() | |
| ]) |