Spaces:
Running
Running
| from ..data_aug import cifar_like_image_test_aug, cifar_like_image_train_aug | |
| from ..ab_dataset import ABDataset | |
| from ..dataset_split import train_val_split | |
| from torchvision.datasets import SVHN as RawSVHN | |
| import numpy as np | |
| from typing import Dict, List, Optional | |
| from torchvision import transforms | |
| from torchvision.transforms import Compose | |
| from utils.common.others import HiddenPrints | |
| from ..registery import dataset_register | |
| class SVHN(ABDataset): | |
| def create_dataset(self, root_dir: str, split: str, transform: Optional[Compose], | |
| classes: List[str], ignore_classes: List[str], idx_map: Optional[Dict[int, int]]): | |
| if transform is None: | |
| mean, std = [0.5] * 3, [0.5] * 3 | |
| transform = transforms.Compose([ | |
| transforms.RandomCrop(32, padding=4), | |
| transforms.ToTensor(), | |
| transforms.Normalize(mean, std) | |
| ]) if split == 'train' else \ | |
| transforms.Compose([ | |
| transforms.Resize(32), | |
| transforms.ToTensor(), | |
| transforms.Normalize(mean, std) | |
| ]) | |
| self.transform = transform | |
| with HiddenPrints(): | |
| dataset = RawSVHN(root_dir, 'train' if split != 'test' else 'test', transform=transform, download=True) | |
| if len(ignore_classes) > 0: | |
| for ignore_class in ignore_classes: | |
| dataset.data = dataset.data[dataset.labels != classes.index(ignore_class)] | |
| dataset.labels = dataset.labels[dataset.labels != classes.index(ignore_class)] | |
| if idx_map is not None: | |
| # note: the code below seems correct but has bug! | |
| # for old_idx, new_idx in idx_map.items(): | |
| # dataset.targets[dataset.targets == old_idx] = new_idx | |
| for ti, t in enumerate(dataset.labels): | |
| dataset.labels[ti] = idx_map[t] | |
| if split != 'test': | |
| dataset = train_val_split(dataset, split) | |
| return dataset | |