Spaces:
Running
Running
| from datasets import load_dataset | |
| import os | |
| import torch | |
| from torch.utils.data import Dataset, DataLoader | |
| from transformers import BertTokenizer, BertForSequenceClassification | |
| from torch.optim import Adam | |
| from torch.nn import CrossEntropyLoss | |
| from typing import Dict, List, Optional, Any | |
| from utils.common.data_record import read_json | |
| from itertools import chain | |
| import random | |
| import json | |
| # from .global_bert_tokenizer import get_tokenizer | |
| from transformers import GPT2Tokenizer | |
| # gpt_neo_series_id = '1.3B_ckpt' | |
| # os.environ['gpt_neo_series_id'] = gpt_neo_series_id | |
| class Law_taskbase(Dataset): | |
| def __init__(self, root_dir: str, split: str, transform: Any, | |
| classes: List[str], ignore_classes: List[str], idx_map: Optional[Dict[int, int]]): | |
| assert transform is None | |
| rate = 0.8 | |
| self.tokenizer = GPT2Tokenizer.from_pretrained(f'experiments/elasticdnn/gpt_neo/{os.environ["gpt_neo_series_id"]}') | |
| special_tokens = {"pad_token":"<|pad|>"}#, "sep_token":"<|sep|>", "bos_token":"<|bos|>"} | |
| self.tokenizer.add_special_tokens(special_tokens) | |
| self.tokenizer.pad_token = "<|pad|>" # 传入tokenizer对象 | |
| # self.tokenizer.pad_token = self.tokenizer.eos_token | |
| self.tokenizer.sep_token = self.tokenizer.eos_token | |
| self.msgs = [] | |
| self.idx_map = [] | |
| self.ignore_classes = [] | |
| self.max_length = 768 # 设置文本的最大长度 | |
| self.split = split | |
| json_file_path = os.path.join(root_dir, f'{split}.json') | |
| if not os.path.exists(json_file_path): | |
| anns = read_json(os.path.join(root_dir, f'data.json')) | |
| random.shuffle(anns) | |
| train_anns = anns[:int(len(anns) * rate)] | |
| test_anns = anns[int(len(anns) * rate):] | |
| train_file_path = os.path.join(root_dir, f'train.json') | |
| test_file_path = os.path.join(root_dir, f'val.json') | |
| with open(train_file_path, 'w') as f: | |
| json.dump(train_anns, f) | |
| with open(test_file_path, 'w') as f: | |
| json.dump(test_anns, f) | |
| anns = read_json(json_file_path) | |
| self.questions = [] | |
| self.answers = [] | |
| for line in anns: | |
| tmp = line['output'].split(' ') | |
| quest = line['input_options'][line['gold_index']] + tmp[0] | |
| ans = ' '.join(tmp[1:]) | |
| self.questions.append(quest) | |
| self.answers.append(ans) | |
| def __len__(self): | |
| return len(self.questions) | |
| def __getitem__(self, idx): | |
| bos, eos, pad, sep = self.tokenizer.bos_token_id, self.tokenizer.eos_token_id, self.tokenizer.pad_token_id, self.tokenizer.sep_token_id | |
| if self.split == 'val': | |
| self.tokenizer.padding_side = "left" | |
| input_ids = [] | |
| labels = [] | |
| input_ids = self.tokenizer.encode("Q: ") + self.tokenizer.encode(self.questions[idx] + '\n\n') + self.tokenizer.encode("A: ") | |
| if len(input_ids) > self.max_length - 128: | |
| return {'return_dict': True} | |
| leng = len(self.tokenizer.decode(input_ids)) | |
| input_ids = [pad] * (self.max_length - 128 - len(input_ids)) + input_ids | |
| labels = self.tokenizer.encode(self.answers[idx], max_length=128, padding="max_length", truncation=True) | |
| if len(labels) > 128: | |
| return {'return_dict': True} | |
| x = { | |
| "input_ids": torch.tensor(input_ids), | |
| "labels": torch.tensor(labels), | |
| 'return_dict': True, | |
| 'len': leng | |
| } | |
| return x | |
| else: | |
| self.tokenizer.padding_side = "right" | |
| input_ids = [] | |
| labels = [] | |
| input_ids = self.tokenizer.encode("Q: ") + self.tokenizer.encode(self.questions[idx] + '\n\n') + self.tokenizer.encode("A: ") | |
| labels = [-100] * len(input_ids) + self.tokenizer.encode(self.answers[idx]) + [eos] | |
| # labels = input_ids + self.tokenizer.encode(target) + [eos] | |
| input_ids += self.tokenizer.encode(self.answers[idx]) + [eos] | |
| if len(input_ids) > self.max_length: | |
| return {'return_dict': True} | |
| attention_mask = [1] * len(input_ids) + [0] * (self.max_length - len(input_ids)) | |
| # labels = [[-100] * (len(token_type_ids) - len(self.tokenizer.encode(target)) - 1)] + [self.tokenizer.encode(target)] + [[eos]] | |
| labels += [-100] * (self.max_length - len(input_ids)) | |
| input_ids += [pad] * (self.max_length - len(input_ids)) | |
| x = { | |
| "input_ids": torch.tensor(input_ids), | |
| "attention_mask": torch.tensor(attention_mask), | |
| "labels": torch.tensor(labels), | |
| 'return_dict': True | |
| } | |
| return x | |
| from ..ab_dataset import ABDataset | |
| from ..registery import dataset_register | |
| class Law_task(ABDataset): | |
| def create_dataset(self, root_dir: str, split: str, transform, | |
| classes: List[str], ignore_classes: List[str], idx_map: Optional[Dict[int, int]]): | |
| return Law_taskbase(root_dir, split, transform, classes, ignore_classes, idx_map) | |
| # a = Law_taskbase('/data/zql/datasets/law_task', 'val', None, None, None, None) | |
| # a.__getitem__(0) |