Spaces:
Running
Running
| from copy import deepcopy | |
| from typing import List | |
| import torch | |
| from methods.base.model import BaseModel | |
| import tqdm | |
| from torch import nn | |
| import torch.nn.functional as F | |
| from abc import abstractmethod | |
| from methods.elasticdnn.model.base import ElasticDNNUtil | |
| from methods.elasticdnn.pipeline.offline.fm_to_md.base import FM_to_MD_Util | |
| from methods.elasticdnn.pipeline.offline.fm_lora.base import FMLoRA_Util | |
| from utils.common.log import logger | |
| from utils.dl.common.model import LayerActivation, get_parameter | |
| class ElasticDNN_OnlineModel(BaseModel): | |
| def __init__(self, name: str, models_dict_path: str, device: str, ab_options: dict): | |
| super().__init__(name, models_dict_path, device) | |
| assert [k in ab_options.keys() for k in ['md_to_fm_alpha', 'fm_to_md_alpha']] | |
| self.ab_options = ab_options | |
| def get_required_model_components(self) -> List[str]: | |
| return ['fm', 'md', 'sd', 'indexes', 'bn_stats'] | |
| def generate_sd_by_target_samples(self, target_samples: torch.Tensor): | |
| elastic_dnn_util = self.get_elastic_dnn_util() | |
| sd, unpruned_indexes_of_layers = elastic_dnn_util.extract_surrogate_dnn_via_samples_with_perf_test(self.models_dict['md'], target_samples.to(self.device), True) | |
| logger.debug(f'generate sd: \n{sd}') | |
| return sd, unpruned_indexes_of_layers | |
| def _compute_diff(self, old, new): | |
| return (new - old).norm(1) / old.norm(1) | |
| def sd_feedback_to_md(self, after_da_sd, unpruned_indexes_of_layers): | |
| self.models_dict['sd'] = after_da_sd | |
| self.before_da_md = deepcopy(self.models_dict['md']) | |
| logger.info('\n\nsurrogate DNN feedback to master DNN...\n\n') | |
| # one-to-one | |
| cur_unpruned_indexes = None | |
| cur_unpruned_indexes_name = None | |
| for p_name, p in self.models_dict['sd'].named_parameters(): | |
| matched_md_param = self.get_md_matched_param_of_sd_param(p_name) | |
| logger.debug(f'if feedback: {p_name}') | |
| if matched_md_param is None: | |
| continue | |
| logger.debug(f'start feedback: {p_name}, {p.size()} -> {matched_md_param.size()}') | |
| # average | |
| # setattr(matched_md_module, matched_md_param_name, (matched_md_param + p) / 2.) | |
| if p_name in unpruned_indexes_of_layers.keys(): | |
| cur_unpruned_indexes = unpruned_indexes_of_layers[p_name] | |
| cur_unpruned_indexes_name = p_name | |
| if p.size() != matched_md_param.size(): | |
| logger.debug(f'cur unpruned indexes: {cur_unpruned_indexes_name}, {cur_unpruned_indexes.size()}') | |
| if p.dim() == 1: # norm | |
| new_p = deepcopy(matched_md_param) | |
| new_p[cur_unpruned_indexes] = p | |
| elif p.dim() == 2: # linear | |
| if p.size(0) < matched_md_param.size(0): # output pruned | |
| new_p = deepcopy(matched_md_param) | |
| new_p[cur_unpruned_indexes] = p | |
| else: # input pruned | |
| new_p = deepcopy(matched_md_param) | |
| new_p[:, cur_unpruned_indexes] = p | |
| p = new_p | |
| assert p.size() == matched_md_param.size(), f'{p.size()}, {matched_md_param.size()}' | |
| diff = self._compute_diff(matched_md_param, (matched_md_param + p) / 2.) | |
| matched_md_param.copy_((matched_md_param + p) / 2.) | |
| logger.debug(f'end feedback: {p_name}, diff: {diff:.6f}') | |
| def infer(self, x, *args, **kwargs): | |
| return self.models_dict['sd'](x) | |
| def set_sd_sparsity(self, sparsity: float): | |
| elastic_dnn_util = self.get_elastic_dnn_util() | |
| elastic_dnn_util.clear_cached_channel_attention_in_master_dnn(self.models_dict['md']) | |
| elastic_dnn_util.set_master_dnn_sparsity(self.models_dict['md'], sparsity) | |
| def md_feedback_to_self_fm(self): | |
| logger.info('\n\nmaster DNN feedback to self foundation model...\n\n') | |
| # one-to-many | |
| def upsample_2d_tensor(p: torch.Tensor, target_len: int): | |
| assert p.dim() == 2 # regard 2d weight as (batch_size, 1d_vector_dim) | |
| return F.upsample(p.unsqueeze(1).unsqueeze(3), | |
| size=(target_len, 1), | |
| mode='bilinear').squeeze(3).squeeze(1) | |
| for (p_name, p), before_p in zip(self.models_dict['md'].named_parameters(), self.before_da_md.parameters()): | |
| matched_fm_param = self.get_fm_matched_param_of_md_param(p_name) | |
| logger.debug(f'if feedback: {p_name}') | |
| if matched_fm_param is None: | |
| continue | |
| index = self.models_dict['indexes'][p_name] | |
| logger.debug(f'start feedback: {p_name}, {p.size()} -> {matched_fm_param.size()}, index: {index.size()}') | |
| p_update = p - before_p | |
| if p.dim() == 2: | |
| p_update = upsample_2d_tensor(p_update, matched_fm_param.size(1)) | |
| p_update = p_update.unsqueeze(1) | |
| index = index.unsqueeze(-1) | |
| # fast | |
| # agg_p_update = (p_update * index).sum(0) | |
| # balanced agg | |
| agg_p_update = 0 | |
| cur_split_size = 64 | |
| while index.size(0) % cur_split_size != 0: | |
| cur_split_size -= 1 | |
| for i in range(0, index.size(0), cur_split_size): | |
| agg_p_update += p_update[i: i + cur_split_size] * index[i: i + cur_split_size] | |
| agg_p_update = agg_p_update.sum(0) | |
| else: | |
| agg_p_update = (p_update.unsqueeze(1) * index).sum(0) | |
| new_fm_param = matched_fm_param + agg_p_update * self.ab_options['md_to_fm_alpha'] | |
| diff = self._compute_diff(matched_fm_param, new_fm_param) | |
| # NOTE: matched_fm_param may not be reference, may be a deepcopy!! | |
| # and only here matched_fm_param needs to be updated, so another method dedicated for updating is necessary here | |
| # matched_fm_param.copy_(new_fm_param) | |
| self.update_fm_param(p_name, new_fm_param) | |
| logger.debug(f'end feedback: {p_name}, diff: {diff:.6f} (md_to_fm_alpha={self.ab_options["md_to_fm_alpha"]:.4f})') | |
| def update_fm_param(self, md_param_name, cal_new_fm_param_by_md_param): | |
| """ | |
| you should get the reference of fm_param and update it | |
| """ | |
| raise NotImplementedError | |
| def aggregate_fms_to_self_fm(self, fms: List[nn.Module]): | |
| # average task-agnositc parameters | |
| logger.info('\n\naggregate foundation models to self foundation model...\n\n') | |
| for p_name, self_p in self.models_dict['fm'].named_parameters(): | |
| logger.debug(f'if aggregate {p_name}') | |
| if 'abs' in p_name or p_name.startswith('norm') or p_name.startswith('head'): | |
| logger.debug(f'{p_name} belongs to LoRA parameters/task-specific head, i.e. task-specific parameters, skip') | |
| continue | |
| all_p = [get_parameter(fm, p_name) for fm in fms] | |
| if any([_p is None for _p in all_p]): | |
| continue | |
| avg_p = sum(all_p) / len(all_p) | |
| # [_p.copy_(avg_p) for _p in all_p] | |
| diff = self._compute_diff(self_p, avg_p) | |
| logger.debug(f'aggregate {p_name}, diff {diff:.6f}') | |
| self_p.copy_(avg_p) | |
| def fm_feedback_to_md(self): | |
| logger.info('\n\nself foundation model feedback to master DNN...\n\n') | |
| # one-to-many | |
| def downsample_2d_tensor(p: torch.Tensor, target_len: int): | |
| assert p.dim() == 2 # regard 2d weight as (batch_size, 1d_vector_dim) | |
| # return F.upsample(p.unsqueeze(1).unsqueeze(3), | |
| # size=(target_len, 1), | |
| # mode='bilinear').squeeze(3).squeeze(1) | |
| return F.interpolate(p.unsqueeze(1).unsqueeze(3), size=(target_len, 1), mode='bilinear').squeeze(3).squeeze(1) | |
| for p_name, p in self.models_dict['md'].named_parameters(): | |
| matched_fm_param = self.get_fm_matched_param_of_md_param(p_name) | |
| logger.debug(f'if feedback: {p_name}') | |
| if matched_fm_param is None: | |
| continue | |
| index = self.models_dict['indexes'][p_name] | |
| logger.debug(f'start feedback: {p_name}, {p.size()} -> {matched_fm_param.size()}, index: {index.size()}') | |
| if p.dim() == 2: | |
| matched_fm_param = downsample_2d_tensor(matched_fm_param, p.size(1)) | |
| matched_fm_param = matched_fm_param.unsqueeze(0) | |
| index = index.unsqueeze(-1) | |
| # fast | |
| # agg_p_update = (p_update * index).sum(0) | |
| # balanced agg | |
| agg_fm_param = 0 | |
| cur_split_size = 64 | |
| while index.size(1) % cur_split_size != 0: | |
| cur_split_size -= 1 | |
| for i in range(0, index.size(1), cur_split_size): | |
| agg_fm_param += matched_fm_param[:, i: i + cur_split_size] * index[:, i: i + cur_split_size] | |
| agg_fm_param = agg_fm_param.sum(1) | |
| # agg_fm_param = downsample_2d_tensor(agg_fm_param, p.size(1)) | |
| else: | |
| agg_fm_param = (matched_fm_param.unsqueeze(0) * index).sum(1) | |
| diff = self._compute_diff(p, agg_fm_param) | |
| p.copy_(agg_fm_param * self.ab_options['fm_to_md_alpha'] + (1. - self.ab_options['fm_to_md_alpha']) * p) | |
| logger.debug(f'end feedback: {p_name}, diff: {diff:.6f} (fm_to_md_alpha: {self.ab_options["fm_to_md_alpha"]:.4f})') | |
| def get_elastic_dnn_util(self) -> ElasticDNNUtil: | |
| pass | |
| def get_task_head_params(self): | |
| pass | |
| def get_md_matched_param_of_sd_param(self, sd_param_name): | |
| pass | |
| def get_fm_matched_param_of_md_param(self, md_param_name): | |
| pass | |
| def get_md_matched_param_of_fm_param(self, fm_param_name): | |
| pass |