Spaces:
Running
Running
Merge conflicts
Browse files- curated.py +37 -63
- main.py +2 -2
- web.py +1 -0
curated.py
CHANGED
|
@@ -131,18 +131,16 @@ wikipedia_filter = pd.DataFrame(
|
|
| 131 |
"0.00%",
|
| 132 |
],
|
| 133 |
"Percent Removed After Local Dedup": [
|
| 134 |
-
"",
|
| 135 |
],
|
| 136 |
"Total Percentage Remaining": [
|
| 137 |
-
"",
|
| 138 |
],
|
| 139 |
}
|
| 140 |
)
|
| 141 |
|
| 142 |
table_html_wikipedia = wikipedia_filter.to_html(index=False, border=0)
|
| 143 |
-
table_div_wikipedia = Div(
|
| 144 |
-
NotStr(table_html_wikipedia), style="margin-left: auto; width: 80%; align: center;"
|
| 145 |
-
)
|
| 146 |
|
| 147 |
freelaw_filter = pd.DataFrame(
|
| 148 |
{
|
|
@@ -171,9 +169,7 @@ freelaw_filter = pd.DataFrame(
|
|
| 171 |
)
|
| 172 |
|
| 173 |
table_html_freelaw = freelaw_filter.to_html(index=False, border=0)
|
| 174 |
-
table_div_freelaw = Div(
|
| 175 |
-
NotStr(table_html_freelaw), style="margin-left: auto; width: 80%; align: center;"
|
| 176 |
-
)
|
| 177 |
|
| 178 |
dmm_filter = pd.DataFrame(
|
| 179 |
{
|
|
@@ -193,18 +189,16 @@ dmm_filter = pd.DataFrame(
|
|
| 193 |
"0.00%",
|
| 194 |
],
|
| 195 |
"Percent Removed After Local Dedup": [
|
| 196 |
-
"",
|
| 197 |
],
|
| 198 |
"Total Percentage Remaining": [
|
| 199 |
-
"%",
|
| 200 |
],
|
| 201 |
}
|
| 202 |
)
|
| 203 |
|
| 204 |
table_html_dmm = dmm_filter.to_html(index=False, border=0)
|
| 205 |
-
table_div_dmm = Div(
|
| 206 |
-
NotStr(table_html_dmm), style="margin-left: auto; width: 80%; align: center;"
|
| 207 |
-
)
|
| 208 |
|
| 209 |
|
| 210 |
uspto_filter = pd.DataFrame(
|
|
@@ -225,18 +219,16 @@ uspto_filter = pd.DataFrame(
|
|
| 225 |
"0.01%",
|
| 226 |
],
|
| 227 |
"Percent Removed After Local Dedup": [
|
| 228 |
-
"",
|
| 229 |
],
|
| 230 |
"Total Percentage Remaining": [
|
| 231 |
-
"%",
|
| 232 |
],
|
| 233 |
}
|
| 234 |
)
|
| 235 |
|
| 236 |
table_html_uspto = uspto_filter.to_html(index=False, border=0)
|
| 237 |
-
table_div_uspto = Div(
|
| 238 |
-
NotStr(table_html_uspto), style="margin-left: auto; width: 80%; align: center;"
|
| 239 |
-
)
|
| 240 |
|
| 241 |
pg19_filter = pd.DataFrame(
|
| 242 |
{
|
|
@@ -256,18 +248,16 @@ pg19_filter = pd.DataFrame(
|
|
| 256 |
"0.17%",
|
| 257 |
],
|
| 258 |
"Percent Removed After Local Dedup": [
|
| 259 |
-
"",
|
| 260 |
],
|
| 261 |
"Total Percentage Remaining": [
|
| 262 |
-
"%",
|
| 263 |
],
|
| 264 |
}
|
| 265 |
)
|
| 266 |
|
| 267 |
table_html_pg19 = pg19_filter.to_html(index=False, border=0)
|
| 268 |
-
table_div_pg19 = Div(
|
| 269 |
-
NotStr(table_html_pg19), style="margin-left: auto; width: 80%; align: center;"
|
| 270 |
-
)
|
| 271 |
|
| 272 |
|
| 273 |
hn_filter = pd.DataFrame(
|
|
@@ -288,18 +278,16 @@ hn_filter = pd.DataFrame(
|
|
| 288 |
"0.34%",
|
| 289 |
],
|
| 290 |
"Percent Removed After Local Dedup": [
|
| 291 |
-
"",
|
| 292 |
],
|
| 293 |
"Total Percentage Remaining": [
|
| 294 |
-
"%",
|
| 295 |
],
|
| 296 |
}
|
| 297 |
)
|
| 298 |
|
| 299 |
table_html_hn = hn_filter.to_html(index=False, border=0)
|
| 300 |
-
table_div_hn = Div(
|
| 301 |
-
NotStr(table_html_hn), style="margin-left: auto; width: 80%; align: center;"
|
| 302 |
-
)
|
| 303 |
|
| 304 |
|
| 305 |
uirc_filter = pd.DataFrame(
|
|
@@ -320,18 +308,16 @@ uirc_filter = pd.DataFrame(
|
|
| 320 |
"1.12%",
|
| 321 |
],
|
| 322 |
"Percent Removed After Local Dedup": [
|
| 323 |
-
"",
|
| 324 |
],
|
| 325 |
"Total Percentage Remaining": [
|
| 326 |
-
"%",
|
| 327 |
],
|
| 328 |
}
|
| 329 |
)
|
| 330 |
|
| 331 |
table_html_uirc = uirc_filter.to_html(index=False, border=0)
|
| 332 |
-
table_div_uirc = Div(
|
| 333 |
-
NotStr(table_html_uirc), style="margin-left: auto; width: 80%; align: center;"
|
| 334 |
-
)
|
| 335 |
|
| 336 |
up_filter = pd.DataFrame(
|
| 337 |
{
|
|
@@ -351,18 +337,16 @@ up_filter = pd.DataFrame(
|
|
| 351 |
"0.00%",
|
| 352 |
],
|
| 353 |
"Percent Removed After Local Dedup": [
|
| 354 |
-
"",
|
| 355 |
],
|
| 356 |
"Total Percentage Remaining": [
|
| 357 |
-
"%",
|
| 358 |
],
|
| 359 |
}
|
| 360 |
)
|
| 361 |
|
| 362 |
table_html_up = up_filter.to_html(index=False, border=0)
|
| 363 |
-
table_div_up = Div(
|
| 364 |
-
NotStr(table_html_up), style="margin-left: auto; width: 80%; align: center;"
|
| 365 |
-
)
|
| 366 |
|
| 367 |
se_filter = pd.DataFrame(
|
| 368 |
{
|
|
@@ -382,18 +366,16 @@ se_filter = pd.DataFrame(
|
|
| 382 |
"0.00%",
|
| 383 |
],
|
| 384 |
"Percent Removed After Local Dedup": [
|
| 385 |
-
"",
|
| 386 |
],
|
| 387 |
"Total Percentage Remaining": [
|
| 388 |
-
"%",
|
| 389 |
],
|
| 390 |
}
|
| 391 |
)
|
| 392 |
|
| 393 |
table_html_se = se_filter.to_html(index=False, border=0)
|
| 394 |
-
table_div_se = Div(
|
| 395 |
-
NotStr(table_html_se), style="margin-left: auto; width: 80%; align: center;"
|
| 396 |
-
)
|
| 397 |
|
| 398 |
arx_filter = pd.DataFrame(
|
| 399 |
{
|
|
@@ -413,18 +395,16 @@ arx_filter = pd.DataFrame(
|
|
| 413 |
"0.07%",
|
| 414 |
],
|
| 415 |
"Percent Removed After Local Dedup": [
|
| 416 |
-
"",
|
| 417 |
],
|
| 418 |
"Total Percentage Remaining": [
|
| 419 |
-
"%",
|
| 420 |
],
|
| 421 |
}
|
| 422 |
)
|
| 423 |
|
| 424 |
table_html_arx = arx_filter.to_html(index=False, border=0)
|
| 425 |
-
table_div_arx = Div(
|
| 426 |
-
NotStr(table_html_arx), style="margin-left: auto; width: 80%; align: center;"
|
| 427 |
-
)
|
| 428 |
|
| 429 |
s2o_filter = pd.DataFrame(
|
| 430 |
{
|
|
@@ -444,18 +424,16 @@ s2o_filter = pd.DataFrame(
|
|
| 444 |
"0.00%",
|
| 445 |
],
|
| 446 |
"Percent Removed After Local Dedup": [
|
| 447 |
-
"",
|
| 448 |
],
|
| 449 |
"Total Percentage Remaining": [
|
| 450 |
-
"%",
|
| 451 |
],
|
| 452 |
}
|
| 453 |
)
|
| 454 |
|
| 455 |
table_html_s2o = s2o_filter.to_html(index=False, border=0)
|
| 456 |
-
table_div_s2o = Div(
|
| 457 |
-
NotStr(table_html_s2o), style="margin-left: auto; width: 80%; align: center;"
|
| 458 |
-
)
|
| 459 |
|
| 460 |
med_filter = pd.DataFrame(
|
| 461 |
{
|
|
@@ -475,18 +453,16 @@ med_filter = pd.DataFrame(
|
|
| 475 |
"0.02%",
|
| 476 |
],
|
| 477 |
"Percent Removed After Local Dedup": [
|
| 478 |
-
"",
|
| 479 |
],
|
| 480 |
"Total Percentage Remaining": [
|
| 481 |
-
"%",
|
| 482 |
],
|
| 483 |
}
|
| 484 |
)
|
| 485 |
|
| 486 |
table_html_med = med_filter.to_html(index=False, border=0)
|
| 487 |
-
table_div_med = Div(
|
| 488 |
-
NotStr(table_html_med), style="margin-left: auto; width: 80%; align: center;"
|
| 489 |
-
)
|
| 490 |
|
| 491 |
phil_filter = pd.DataFrame(
|
| 492 |
{
|
|
@@ -506,18 +482,16 @@ phil_filter = pd.DataFrame(
|
|
| 506 |
"0.12%",
|
| 507 |
],
|
| 508 |
"Percent Removed After Local Dedup": [
|
| 509 |
-
"",
|
| 510 |
],
|
| 511 |
"Total Percentage Remaining": [
|
| 512 |
-
"%",
|
| 513 |
],
|
| 514 |
}
|
| 515 |
)
|
| 516 |
|
| 517 |
table_html_phil = phil_filter.to_html(index=False, border=0)
|
| 518 |
-
table_div_phil = Div(
|
| 519 |
-
NotStr(table_html_phil), style="margin-left: auto; width: 80%; align: center;"
|
| 520 |
-
)
|
| 521 |
## end individual tables showing filterin
|
| 522 |
|
| 523 |
|
|
|
|
| 131 |
"0.00%",
|
| 132 |
],
|
| 133 |
"Percent Removed After Local Dedup": [
|
| 134 |
+
"0.31%",
|
| 135 |
],
|
| 136 |
"Total Percentage Remaining": [
|
| 137 |
+
"97.84%",
|
| 138 |
],
|
| 139 |
}
|
| 140 |
)
|
| 141 |
|
| 142 |
table_html_wikipedia = wikipedia_filter.to_html(index=False, border=0)
|
| 143 |
+
table_div_wikipedia = Div(NotStr(table_html_wikipedia))
|
|
|
|
|
|
|
| 144 |
|
| 145 |
freelaw_filter = pd.DataFrame(
|
| 146 |
{
|
|
|
|
| 169 |
)
|
| 170 |
|
| 171 |
table_html_freelaw = freelaw_filter.to_html(index=False, border=0)
|
| 172 |
+
table_div_freelaw = Div(NotStr(table_html_freelaw))
|
|
|
|
|
|
|
| 173 |
|
| 174 |
dmm_filter = pd.DataFrame(
|
| 175 |
{
|
|
|
|
| 189 |
"0.00%",
|
| 190 |
],
|
| 191 |
"Percent Removed After Local Dedup": [
|
| 192 |
+
"0.00%",
|
| 193 |
],
|
| 194 |
"Total Percentage Remaining": [
|
| 195 |
+
"100.00%",
|
| 196 |
],
|
| 197 |
}
|
| 198 |
)
|
| 199 |
|
| 200 |
table_html_dmm = dmm_filter.to_html(index=False, border=0)
|
| 201 |
+
table_div_dmm = Div(NotStr(table_html_dmm))
|
|
|
|
|
|
|
| 202 |
|
| 203 |
|
| 204 |
uspto_filter = pd.DataFrame(
|
|
|
|
| 219 |
"0.01%",
|
| 220 |
],
|
| 221 |
"Percent Removed After Local Dedup": [
|
| 222 |
+
"22.94%",
|
| 223 |
],
|
| 224 |
"Total Percentage Remaining": [
|
| 225 |
+
"75.60%",
|
| 226 |
],
|
| 227 |
}
|
| 228 |
)
|
| 229 |
|
| 230 |
table_html_uspto = uspto_filter.to_html(index=False, border=0)
|
| 231 |
+
table_div_uspto = Div(NotStr(table_html_uspto))
|
|
|
|
|
|
|
| 232 |
|
| 233 |
pg19_filter = pd.DataFrame(
|
| 234 |
{
|
|
|
|
| 248 |
"0.17%",
|
| 249 |
],
|
| 250 |
"Percent Removed After Local Dedup": [
|
| 251 |
+
"0.80%",
|
| 252 |
],
|
| 253 |
"Total Percentage Remaining": [
|
| 254 |
+
"98.78%",
|
| 255 |
],
|
| 256 |
}
|
| 257 |
)
|
| 258 |
|
| 259 |
table_html_pg19 = pg19_filter.to_html(index=False, border=0)
|
| 260 |
+
table_div_pg19 = Div(NotStr(table_html_pg19))
|
|
|
|
|
|
|
| 261 |
|
| 262 |
|
| 263 |
hn_filter = pd.DataFrame(
|
|
|
|
| 278 |
"0.34%",
|
| 279 |
],
|
| 280 |
"Percent Removed After Local Dedup": [
|
| 281 |
+
"61.84%",
|
| 282 |
],
|
| 283 |
"Total Percentage Remaining": [
|
| 284 |
+
"37.03%",
|
| 285 |
],
|
| 286 |
}
|
| 287 |
)
|
| 288 |
|
| 289 |
table_html_hn = hn_filter.to_html(index=False, border=0)
|
| 290 |
+
table_div_hn = Div(NotStr(table_html_hn))
|
|
|
|
|
|
|
| 291 |
|
| 292 |
|
| 293 |
uirc_filter = pd.DataFrame(
|
|
|
|
| 308 |
"1.12%",
|
| 309 |
],
|
| 310 |
"Percent Removed After Local Dedup": [
|
| 311 |
+
"0.66%",
|
| 312 |
],
|
| 313 |
"Total Percentage Remaining": [
|
| 314 |
+
"60.72%",
|
| 315 |
],
|
| 316 |
}
|
| 317 |
)
|
| 318 |
|
| 319 |
table_html_uirc = uirc_filter.to_html(index=False, border=0)
|
| 320 |
+
table_div_uirc = Div(NotStr(table_html_uirc))
|
|
|
|
|
|
|
| 321 |
|
| 322 |
up_filter = pd.DataFrame(
|
| 323 |
{
|
|
|
|
| 337 |
"0.00%",
|
| 338 |
],
|
| 339 |
"Percent Removed After Local Dedup": [
|
| 340 |
+
"1.00%",
|
| 341 |
],
|
| 342 |
"Total Percentage Remaining": [
|
| 343 |
+
"99.00%",
|
| 344 |
],
|
| 345 |
}
|
| 346 |
)
|
| 347 |
|
| 348 |
table_html_up = up_filter.to_html(index=False, border=0)
|
| 349 |
+
table_div_up = Div(NotStr(table_html_up))
|
|
|
|
|
|
|
| 350 |
|
| 351 |
se_filter = pd.DataFrame(
|
| 352 |
{
|
|
|
|
| 366 |
"0.00%",
|
| 367 |
],
|
| 368 |
"Percent Removed After Local Dedup": [
|
| 369 |
+
"0.00%",
|
| 370 |
],
|
| 371 |
"Total Percentage Remaining": [
|
| 372 |
+
"100.00%",
|
| 373 |
],
|
| 374 |
}
|
| 375 |
)
|
| 376 |
|
| 377 |
table_html_se = se_filter.to_html(index=False, border=0)
|
| 378 |
+
table_div_se = Div(NotStr(table_html_se))
|
|
|
|
|
|
|
| 379 |
|
| 380 |
arx_filter = pd.DataFrame(
|
| 381 |
{
|
|
|
|
| 395 |
"0.07%",
|
| 396 |
],
|
| 397 |
"Percent Removed After Local Dedup": [
|
| 398 |
+
"0.00%",
|
| 399 |
],
|
| 400 |
"Total Percentage Remaining": [
|
| 401 |
+
"92.20%",
|
| 402 |
],
|
| 403 |
}
|
| 404 |
)
|
| 405 |
|
| 406 |
table_html_arx = arx_filter.to_html(index=False, border=0)
|
| 407 |
+
table_div_arx = Div(NotStr(table_html_arx))
|
|
|
|
|
|
|
| 408 |
|
| 409 |
s2o_filter = pd.DataFrame(
|
| 410 |
{
|
|
|
|
| 424 |
"0.00%",
|
| 425 |
],
|
| 426 |
"Percent Removed After Local Dedup": [
|
| 427 |
+
"0.00%",
|
| 428 |
],
|
| 429 |
"Total Percentage Remaining": [
|
| 430 |
+
"100.00%",
|
| 431 |
],
|
| 432 |
}
|
| 433 |
)
|
| 434 |
|
| 435 |
table_html_s2o = s2o_filter.to_html(index=False, border=0)
|
| 436 |
+
table_div_s2o = Div(NotStr(table_html_s2o))
|
|
|
|
|
|
|
| 437 |
|
| 438 |
med_filter = pd.DataFrame(
|
| 439 |
{
|
|
|
|
| 453 |
"0.02%",
|
| 454 |
],
|
| 455 |
"Percent Removed After Local Dedup": [
|
| 456 |
+
"0.00%",
|
| 457 |
],
|
| 458 |
"Total Percentage Remaining": [
|
| 459 |
+
"91.14%",
|
| 460 |
],
|
| 461 |
}
|
| 462 |
)
|
| 463 |
|
| 464 |
table_html_med = med_filter.to_html(index=False, border=0)
|
| 465 |
+
table_div_med = Div(NotStr(table_html_med))
|
|
|
|
|
|
|
| 466 |
|
| 467 |
phil_filter = pd.DataFrame(
|
| 468 |
{
|
|
|
|
| 482 |
"0.12%",
|
| 483 |
],
|
| 484 |
"Percent Removed After Local Dedup": [
|
| 485 |
+
"0.00%",
|
| 486 |
],
|
| 487 |
"Total Percentage Remaining": [
|
| 488 |
+
"79.22%",
|
| 489 |
],
|
| 490 |
}
|
| 491 |
)
|
| 492 |
|
| 493 |
table_html_phil = phil_filter.to_html(index=False, border=0)
|
| 494 |
+
table_div_phil = Div(NotStr(table_html_phil))
|
|
|
|
|
|
|
| 495 |
## end individual tables showing filterin
|
| 496 |
|
| 497 |
|
main.py
CHANGED
|
@@ -757,7 +757,7 @@ dataset_sources = pd.DataFrame(
|
|
| 757 |
"StackExchange",
|
| 758 |
],
|
| 759 |
"Raw Data Size": [
|
| 760 |
-
"
|
| 761 |
"712 GB",
|
| 762 |
"210 GB",
|
| 763 |
"23 GB",
|
|
@@ -770,7 +770,7 @@ dataset_sources = pd.DataFrame(
|
|
| 770 |
"45 GB",
|
| 771 |
],
|
| 772 |
"Token Count": [
|
| 773 |
-
"
|
| 774 |
"154.96B",
|
| 775 |
"4.75B",
|
| 776 |
"7.34B",
|
|
|
|
| 757 |
"StackExchange",
|
| 758 |
],
|
| 759 |
"Raw Data Size": [
|
| 760 |
+
"9.2 TB",
|
| 761 |
"712 GB",
|
| 762 |
"210 GB",
|
| 763 |
"23 GB",
|
|
|
|
| 770 |
"45 GB",
|
| 771 |
],
|
| 772 |
"Token Count": [
|
| 773 |
+
"4.83T",
|
| 774 |
"154.96B",
|
| 775 |
"4.75B",
|
| 776 |
"7.34B",
|
web.py
CHANGED
|
@@ -376,6 +376,7 @@ def web_data():
|
|
| 376 |
return Div(
|
| 377 |
Section(
|
| 378 |
Div(
|
|
|
|
| 379 |
H2("Common Crawl Snapshot Processing"),
|
| 380 |
H3("What This Section Contains"),
|
| 381 |
P("This section provides a complete discussion on the filtering applied to the 99 Common Crawl snapshots that comprise the web data section of TxT360. The section is split into the following topic areas: "),
|
|
|
|
| 376 |
return Div(
|
| 377 |
Section(
|
| 378 |
Div(
|
| 379 |
+
H1("Web Data Processing"),
|
| 380 |
H2("Common Crawl Snapshot Processing"),
|
| 381 |
H3("What This Section Contains"),
|
| 382 |
P("This section provides a complete discussion on the filtering applied to the 99 Common Crawl snapshots that comprise the web data section of TxT360. The section is split into the following topic areas: "),
|