Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -8,7 +8,6 @@ import pandas as pd
|
|
| 8 |
import warnings
|
| 9 |
import math
|
| 10 |
import numpy as np
|
| 11 |
-
from tensorflow.keras.models import load_model
|
| 12 |
|
| 13 |
# Suppress warnings
|
| 14 |
warnings.filterwarnings("ignore", category=UserWarning, message="Using a slow image processor as `use_fast` is unset")
|
|
@@ -36,7 +35,6 @@ model_3 = AutoModelForImageClassification.from_pretrained(models[0]).to(device)
|
|
| 36 |
feature_extractor_4 = AutoFeatureExtractor.from_pretrained(models[1], device=device)
|
| 37 |
model_4 = AutoModelForImageClassification.from_pretrained(models[1]).to(device)
|
| 38 |
|
| 39 |
-
model_5 = load_model("large_model_3lakh_v1.h5")
|
| 40 |
# Define class names for all models
|
| 41 |
class_names_1 = ['artificial', 'real']
|
| 42 |
class_names_2 = ['AI Image', 'Real Image']
|
|
@@ -158,14 +156,14 @@ def predict_image(img, confidence_threshold):
|
|
| 158 |
except Exception as e:
|
| 159 |
label_4 = f"Error: {str(e)}"
|
| 160 |
|
| 161 |
-
try:
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
except Exception as e:
|
| 168 |
-
|
| 169 |
|
| 170 |
|
| 171 |
# Combine results
|
|
@@ -174,7 +172,7 @@ def predict_image(img, confidence_threshold):
|
|
| 174 |
"AI-vs-Real-Image-Detection": label_2,
|
| 175 |
"Organika/sdxl-detector": label_3,
|
| 176 |
"cmckinle/sdxl-flux-detector": label_4,
|
| 177 |
-
"ALSv": label_5
|
| 178 |
}
|
| 179 |
|
| 180 |
return combined_results
|
|
|
|
| 8 |
import warnings
|
| 9 |
import math
|
| 10 |
import numpy as np
|
|
|
|
| 11 |
|
| 12 |
# Suppress warnings
|
| 13 |
warnings.filterwarnings("ignore", category=UserWarning, message="Using a slow image processor as `use_fast` is unset")
|
|
|
|
| 35 |
feature_extractor_4 = AutoFeatureExtractor.from_pretrained(models[1], device=device)
|
| 36 |
model_4 = AutoModelForImageClassification.from_pretrained(models[1]).to(device)
|
| 37 |
|
|
|
|
| 38 |
# Define class names for all models
|
| 39 |
class_names_1 = ['artificial', 'real']
|
| 40 |
class_names_2 = ['AI Image', 'Real Image']
|
|
|
|
| 156 |
except Exception as e:
|
| 157 |
label_4 = f"Error: {str(e)}"
|
| 158 |
|
| 159 |
+
# try:
|
| 160 |
+
# pred = model.predict(np.expand_dims(img_pil / 255, 0))
|
| 161 |
+
# result_5 = {
|
| 162 |
+
# 'AI': pred[0],
|
| 163 |
+
# 'Real': pred[1]
|
| 164 |
+
# }
|
| 165 |
+
# except Exception as e:
|
| 166 |
+
# label_3 = f"Error: {str(e)}"
|
| 167 |
|
| 168 |
|
| 169 |
# Combine results
|
|
|
|
| 172 |
"AI-vs-Real-Image-Detection": label_2,
|
| 173 |
"Organika/sdxl-detector": label_3,
|
| 174 |
"cmckinle/sdxl-flux-detector": label_4,
|
| 175 |
+
# "ALSv": label_5
|
| 176 |
}
|
| 177 |
|
| 178 |
return combined_results
|