Spaces:
Runtime error
Runtime error
| import math | |
| import random | |
| import argparse | |
| from typing import Optional | |
| import cv2 | |
| import numpy as np | |
| import numpy.typing as npt | |
| import torch | |
| from PIL import Image | |
| from decord import VideoReader, cpu | |
| from torch.nn import functional as F | |
| from pytorchvideo.transforms import ShortSideScale | |
| from torchvision.transforms import Lambda, Compose | |
| import sys | |
| sys.path.append(".") | |
| from opensora.models.ae import getae_wrapper | |
| from opensora.dataset.transform import CenterCropVideo, resize | |
| from opensora.models.ae.videobase import CausalVAEModel | |
| def array_to_video(image_array: npt.NDArray, fps: float = 30.0, output_file: str = 'output_video.mp4') -> None: | |
| height, width, channels = image_array[0].shape | |
| fourcc = cv2.VideoWriter_fourcc(*'mp4v') | |
| video_writer = cv2.VideoWriter(output_file, fourcc, float(fps), (width, height)) | |
| for image in image_array: | |
| image_rgb = cv2.cvtColor(image, cv2.COLOR_RGB2BGR) | |
| video_writer.write(image_rgb) | |
| video_writer.release() | |
| def custom_to_video(x: torch.Tensor, fps: float = 2.0, output_file: str = 'output_video.mp4') -> None: | |
| x = x.detach().cpu() | |
| x = torch.clamp(x, -1, 1) | |
| x = (x + 1) / 2 | |
| x = x.permute(0, 2, 3, 1).numpy() | |
| x = (255 * x).astype(np.uint8) | |
| array_to_video(x, fps=fps, output_file=output_file) | |
| return | |
| def read_video(video_path: str, num_frames: int, sample_rate: int) -> torch.Tensor: | |
| decord_vr = VideoReader(video_path, ctx=cpu(0)) | |
| total_frames = len(decord_vr) | |
| sample_frames_len = sample_rate * num_frames | |
| if total_frames > sample_frames_len: | |
| s = random.randint(0, total_frames - sample_frames_len - 1) | |
| s = 0 | |
| e = s + sample_frames_len | |
| num_frames = num_frames | |
| else: | |
| s = 0 | |
| e = total_frames | |
| num_frames = int(total_frames / sample_frames_len * num_frames) | |
| print(f'sample_frames_len {sample_frames_len}, only can sample {num_frames * sample_rate}', video_path, | |
| total_frames) | |
| frame_id_list = np.linspace(s, e - 1, num_frames, dtype=int) | |
| video_data = decord_vr.get_batch(frame_id_list).asnumpy() | |
| video_data = torch.from_numpy(video_data) | |
| video_data = video_data.permute(3, 0, 1, 2) # (T, H, W, C) -> (C, T, H, W) | |
| return video_data | |
| class ResizeVideo: | |
| def __init__( | |
| self, | |
| size, | |
| interpolation_mode="bilinear", | |
| ): | |
| self.size = size | |
| self.interpolation_mode = interpolation_mode | |
| def __call__(self, clip): | |
| _, _, h, w = clip.shape | |
| if w < h: | |
| new_h = int(math.floor((float(h) / w) * self.size)) | |
| new_w = self.size | |
| else: | |
| new_h = self.size | |
| new_w = int(math.floor((float(w) / h) * self.size)) | |
| return torch.nn.functional.interpolate( | |
| clip, size=(new_h, new_w), mode=self.interpolation_mode, align_corners=False, antialias=True | |
| ) | |
| def __repr__(self) -> str: | |
| return f"{self.__class__.__name__}(size={self.size}, interpolation_mode={self.interpolation_mode}" | |
| def preprocess(video_data: torch.Tensor, short_size: int = 128, crop_size: Optional[int] = None) -> torch.Tensor: | |
| transform = Compose( | |
| [ | |
| Lambda(lambda x: ((x / 255.0) * 2 - 1)), | |
| ResizeVideo(size=short_size), | |
| CenterCropVideo(crop_size) if crop_size is not None else Lambda(lambda x: x), | |
| ] | |
| ) | |
| video_outputs = transform(video_data) | |
| video_outputs = torch.unsqueeze(video_outputs, 0) | |
| return video_outputs | |
| def main(args: argparse.Namespace): | |
| device = args.device | |
| kwarg = {} | |
| # vae = getae_wrapper(args.ae)(args.model_path, subfolder="vae", cache_dir='cache_dir', **kwarg).to(device) | |
| vae = getae_wrapper(args.ae)(args.ae_path, **kwarg).to(device) | |
| if args.enable_tiling: | |
| vae.vae.enable_tiling() | |
| vae.vae.tile_overlap_factor = args.tile_overlap_factor | |
| vae.eval() | |
| vae = vae.to(device) | |
| vae = vae.half() | |
| with torch.no_grad(): | |
| x_vae = preprocess(read_video(args.video_path, args.num_frames, args.sample_rate), args.resolution, | |
| args.crop_size) | |
| x_vae = x_vae.to(device, dtype=torch.float16) # b c t h w | |
| # from tqdm import tqdm | |
| # for i in tqdm(range(10000000)): | |
| latents = vae.encode(x_vae) | |
| latents = latents.to(torch.float16) | |
| video_recon = vae.decode(latents) # b t c h w | |
| if video_recon.shape[2] == 1: | |
| x = video_recon[0, 0, :, :, :] | |
| x = x.squeeze() | |
| x = x.detach().cpu().numpy() | |
| x = np.clip(x, -1, 1) | |
| x = (x + 1) / 2 | |
| x = (255 * x).astype(np.uint8) | |
| x = x.transpose(1, 2, 0) | |
| image = Image.fromarray(x) | |
| image.save(args.rec_path.replace('mp4', 'jpg')) | |
| else: | |
| custom_to_video(video_recon[0], fps=args.fps, output_file=args.rec_path) | |
| if __name__ == '__main__': | |
| parser = argparse.ArgumentParser() | |
| parser.add_argument('--video_path', type=str, default='') | |
| parser.add_argument('--rec_path', type=str, default='') | |
| parser.add_argument('--ae', type=str, default='') | |
| parser.add_argument('--ae_path', type=str, default='') | |
| parser.add_argument('--model_path', type=str, default='results/pretrained') | |
| parser.add_argument('--fps', type=int, default=30) | |
| parser.add_argument('--resolution', type=int, default=336) | |
| parser.add_argument('--crop_size', type=int, default=None) | |
| parser.add_argument('--num_frames', type=int, default=100) | |
| parser.add_argument('--sample_rate', type=int, default=1) | |
| parser.add_argument('--device', type=str, default="cuda") | |
| parser.add_argument('--tile_overlap_factor', type=float, default=0.25) | |
| parser.add_argument('--enable_tiling', action='store_true') | |
| parser.add_argument('--enable_time_chunk', action='store_true') | |
| args = parser.parse_args() | |
| main(args) | |