Spaces:
Runtime error
Runtime error
| import torch | |
| import numpy as np | |
| class DiagonalGaussianDistribution(object): | |
| def __init__(self, parameters, deterministic=False): | |
| self.parameters = parameters | |
| self.mean, self.logvar = torch.chunk(parameters, 2, dim=1) | |
| self.logvar = torch.clamp(self.logvar, -30.0, 20.0) | |
| self.deterministic = deterministic | |
| self.std = torch.exp(0.5 * self.logvar) | |
| self.var = torch.exp(self.logvar) | |
| if self.deterministic: | |
| self.var = self.std = torch.zeros_like(self.mean).to(device=self.parameters.device) | |
| def sample(self): | |
| x = self.mean + self.std * torch.randn(self.mean.shape).to(device=self.parameters.device) | |
| return x | |
| def kl(self, other=None): | |
| if self.deterministic: | |
| return torch.Tensor([0.]) | |
| else: | |
| if other is None: | |
| return 0.5 * torch.sum(torch.pow(self.mean, 2) | |
| + self.var - 1.0 - self.logvar, | |
| dim=[1, 2, 3]) | |
| else: | |
| return 0.5 * torch.sum( | |
| torch.pow(self.mean - other.mean, 2) / other.var | |
| + self.var / other.var - 1.0 - self.logvar + other.logvar, | |
| dim=[1, 2, 3]) | |
| def nll(self, sample, dims=[1,2,3]): | |
| if self.deterministic: | |
| return torch.Tensor([0.]) | |
| logtwopi = np.log(2.0 * np.pi) | |
| return 0.5 * torch.sum( | |
| logtwopi + self.logvar + torch.pow(sample - self.mean, 2) / self.var, | |
| dim=dims) | |
| def mode(self): | |
| return self.mean | |