Spaces:
Runtime error
Runtime error
| import numpy as np | |
| import torch | |
| from PIL import ImageFile | |
| import torch.nn.functional as F | |
| ImageFile.LOAD_TRUNCATED_IMAGES = True | |
| def warp(img, flow): | |
| B, _, H, W = flow.shape | |
| xx = torch.linspace(-1.0, 1.0, W).view(1, 1, 1, W).expand(B, -1, H, -1) | |
| yy = torch.linspace(-1.0, 1.0, H).view(1, 1, H, 1).expand(B, -1, -1, W) | |
| grid = torch.cat([xx, yy], 1).to(img) | |
| flow_ = torch.cat([flow[:, 0:1, :, :] / ((W - 1.0) / 2.0), flow[:, 1:2, :, :] / ((H - 1.0) / 2.0)], 1) | |
| grid_ = (grid + flow_).permute(0, 2, 3, 1) | |
| output = F.grid_sample(input=img, grid=grid_, mode='bilinear', padding_mode='border', align_corners=True) | |
| return output | |
| def make_colorwheel(): | |
| """ | |
| Generates a color wheel for optical flow visualization as presented in: | |
| Baker et al. "A Database and Evaluation Methodology for Optical Flow" (ICCV, 2007) | |
| URL: http://vision.middlebury.edu/flow/flowEval-iccv07.pdf | |
| Code follows the original C++ source code of Daniel Scharstein. | |
| Code follows the the Matlab source code of Deqing Sun. | |
| Returns: | |
| np.ndarray: Color wheel | |
| """ | |
| RY = 15 | |
| YG = 6 | |
| GC = 4 | |
| CB = 11 | |
| BM = 13 | |
| MR = 6 | |
| ncols = RY + YG + GC + CB + BM + MR | |
| colorwheel = np.zeros((ncols, 3)) | |
| col = 0 | |
| # RY | |
| colorwheel[0:RY, 0] = 255 | |
| colorwheel[0:RY, 1] = np.floor(255*np.arange(0,RY)/RY) | |
| col = col+RY | |
| # YG | |
| colorwheel[col:col+YG, 0] = 255 - np.floor(255*np.arange(0,YG)/YG) | |
| colorwheel[col:col+YG, 1] = 255 | |
| col = col+YG | |
| # GC | |
| colorwheel[col:col+GC, 1] = 255 | |
| colorwheel[col:col+GC, 2] = np.floor(255*np.arange(0,GC)/GC) | |
| col = col+GC | |
| # CB | |
| colorwheel[col:col+CB, 1] = 255 - np.floor(255*np.arange(CB)/CB) | |
| colorwheel[col:col+CB, 2] = 255 | |
| col = col+CB | |
| # BM | |
| colorwheel[col:col+BM, 2] = 255 | |
| colorwheel[col:col+BM, 0] = np.floor(255*np.arange(0,BM)/BM) | |
| col = col+BM | |
| # MR | |
| colorwheel[col:col+MR, 2] = 255 - np.floor(255*np.arange(MR)/MR) | |
| colorwheel[col:col+MR, 0] = 255 | |
| return colorwheel | |
| def flow_uv_to_colors(u, v, convert_to_bgr=False): | |
| """ | |
| Applies the flow color wheel to (possibly clipped) flow components u and v. | |
| According to the C++ source code of Daniel Scharstein | |
| According to the Matlab source code of Deqing Sun | |
| Args: | |
| u (np.ndarray): Input horizontal flow of shape [H,W] | |
| v (np.ndarray): Input vertical flow of shape [H,W] | |
| convert_to_bgr (bool, optional): Convert output image to BGR. Defaults to False. | |
| Returns: | |
| np.ndarray: Flow visualization image of shape [H,W,3] | |
| """ | |
| flow_image = np.zeros((u.shape[0], u.shape[1], 3), np.uint8) | |
| colorwheel = make_colorwheel() # shape [55x3] | |
| ncols = colorwheel.shape[0] | |
| rad = np.sqrt(np.square(u) + np.square(v)) | |
| a = np.arctan2(-v, -u)/np.pi | |
| fk = (a+1) / 2*(ncols-1) | |
| k0 = np.floor(fk).astype(np.int32) | |
| k1 = k0 + 1 | |
| k1[k1 == ncols] = 0 | |
| f = fk - k0 | |
| for i in range(colorwheel.shape[1]): | |
| tmp = colorwheel[:,i] | |
| col0 = tmp[k0] / 255.0 | |
| col1 = tmp[k1] / 255.0 | |
| col = (1-f)*col0 + f*col1 | |
| idx = (rad <= 1) | |
| col[idx] = 1 - rad[idx] * (1-col[idx]) | |
| col[~idx] = col[~idx] * 0.75 # out of range | |
| # Note the 2-i => BGR instead of RGB | |
| ch_idx = 2-i if convert_to_bgr else i | |
| flow_image[:,:,ch_idx] = np.floor(255 * col) | |
| return flow_image | |
| def flow_to_image(flow_uv, clip_flow=None, convert_to_bgr=False): | |
| """ | |
| Expects a two dimensional flow image of shape. | |
| Args: | |
| flow_uv (np.ndarray): Flow UV image of shape [H,W,2] | |
| clip_flow (float, optional): Clip maximum of flow values. Defaults to None. | |
| convert_to_bgr (bool, optional): Convert output image to BGR. Defaults to False. | |
| Returns: | |
| np.ndarray: Flow visualization image of shape [H,W,3] | |
| """ | |
| assert flow_uv.ndim == 3, 'input flow must have three dimensions' | |
| assert flow_uv.shape[2] == 2, 'input flow must have shape [H,W,2]' | |
| if clip_flow is not None: | |
| flow_uv = np.clip(flow_uv, 0, clip_flow) | |
| u = flow_uv[:,:,0] | |
| v = flow_uv[:,:,1] | |
| rad = np.sqrt(np.square(u) + np.square(v)) | |
| rad_max = np.max(rad) | |
| epsilon = 1e-5 | |
| u = u / (rad_max + epsilon) | |
| v = v / (rad_max + epsilon) | |
| return flow_uv_to_colors(u, v, convert_to_bgr) |