Spaces:
Runtime error
Runtime error
| import math | |
| import torch | |
| from torch import autograd as autograd | |
| from torch import nn as nn | |
| from torch.nn import functional as F | |
| from basicsr.archs.vgg_arch import VGGFeatureExtractor | |
| from basicsr.utils.registry import LOSS_REGISTRY | |
| from .loss_util import weighted_loss | |
| _reduction_modes = ['none', 'mean', 'sum'] | |
| def l1_loss(pred, target): | |
| return F.l1_loss(pred, target, reduction='none') | |
| def mse_loss(pred, target): | |
| return F.mse_loss(pred, target, reduction='none') | |
| def charbonnier_loss(pred, target, eps=1e-12): | |
| return torch.sqrt((pred - target)**2 + eps) | |
| class L1Loss(nn.Module): | |
| """L1 (mean absolute error, MAE) loss. | |
| Args: | |
| loss_weight (float): Loss weight for L1 loss. Default: 1.0. | |
| reduction (str): Specifies the reduction to apply to the output. | |
| Supported choices are 'none' | 'mean' | 'sum'. Default: 'mean'. | |
| """ | |
| def __init__(self, loss_weight=1.0, reduction='mean'): | |
| super(L1Loss, self).__init__() | |
| if reduction not in ['none', 'mean', 'sum']: | |
| raise ValueError(f'Unsupported reduction mode: {reduction}. Supported ones are: {_reduction_modes}') | |
| self.loss_weight = loss_weight | |
| self.reduction = reduction | |
| def forward(self, pred, target, weight=None, **kwargs): | |
| """ | |
| Args: | |
| pred (Tensor): of shape (N, C, H, W). Predicted tensor. | |
| target (Tensor): of shape (N, C, H, W). Ground truth tensor. | |
| weight (Tensor, optional): of shape (N, C, H, W). Element-wise weights. Default: None. | |
| """ | |
| return self.loss_weight * l1_loss(pred, target, weight, reduction=self.reduction) | |
| class MSELoss(nn.Module): | |
| """MSE (L2) loss. | |
| Args: | |
| loss_weight (float): Loss weight for MSE loss. Default: 1.0. | |
| reduction (str): Specifies the reduction to apply to the output. | |
| Supported choices are 'none' | 'mean' | 'sum'. Default: 'mean'. | |
| """ | |
| def __init__(self, loss_weight=1.0, reduction='mean'): | |
| super(MSELoss, self).__init__() | |
| if reduction not in ['none', 'mean', 'sum']: | |
| raise ValueError(f'Unsupported reduction mode: {reduction}. Supported ones are: {_reduction_modes}') | |
| self.loss_weight = loss_weight | |
| self.reduction = reduction | |
| def forward(self, pred, target, weight=None, **kwargs): | |
| """ | |
| Args: | |
| pred (Tensor): of shape (N, C, H, W). Predicted tensor. | |
| target (Tensor): of shape (N, C, H, W). Ground truth tensor. | |
| weight (Tensor, optional): of shape (N, C, H, W). Element-wise weights. Default: None. | |
| """ | |
| return self.loss_weight * mse_loss(pred, target, weight, reduction=self.reduction) | |
| class CharbonnierLoss(nn.Module): | |
| """Charbonnier loss (one variant of Robust L1Loss, a differentiable | |
| variant of L1Loss). | |
| Described in "Deep Laplacian Pyramid Networks for Fast and Accurate | |
| Super-Resolution". | |
| Args: | |
| loss_weight (float): Loss weight for L1 loss. Default: 1.0. | |
| reduction (str): Specifies the reduction to apply to the output. | |
| Supported choices are 'none' | 'mean' | 'sum'. Default: 'mean'. | |
| eps (float): A value used to control the curvature near zero. Default: 1e-12. | |
| """ | |
| def __init__(self, loss_weight=1.0, reduction='mean', eps=1e-12): | |
| super(CharbonnierLoss, self).__init__() | |
| if reduction not in ['none', 'mean', 'sum']: | |
| raise ValueError(f'Unsupported reduction mode: {reduction}. Supported ones are: {_reduction_modes}') | |
| self.loss_weight = loss_weight | |
| self.reduction = reduction | |
| self.eps = eps | |
| def forward(self, pred, target, weight=None, **kwargs): | |
| """ | |
| Args: | |
| pred (Tensor): of shape (N, C, H, W). Predicted tensor. | |
| target (Tensor): of shape (N, C, H, W). Ground truth tensor. | |
| weight (Tensor, optional): of shape (N, C, H, W). Element-wise weights. Default: None. | |
| """ | |
| return self.loss_weight * charbonnier_loss(pred, target, weight, eps=self.eps, reduction=self.reduction) | |
| class WeightedTVLoss(L1Loss): | |
| """Weighted TV loss. | |
| Args: | |
| loss_weight (float): Loss weight. Default: 1.0. | |
| """ | |
| def __init__(self, loss_weight=1.0, reduction='mean'): | |
| if reduction not in ['mean', 'sum']: | |
| raise ValueError(f'Unsupported reduction mode: {reduction}. Supported ones are: mean | sum') | |
| super(WeightedTVLoss, self).__init__(loss_weight=loss_weight, reduction=reduction) | |
| def forward(self, pred, weight=None): | |
| if weight is None: | |
| y_weight = None | |
| x_weight = None | |
| else: | |
| y_weight = weight[:, :, :-1, :] | |
| x_weight = weight[:, :, :, :-1] | |
| y_diff = super().forward(pred[:, :, :-1, :], pred[:, :, 1:, :], weight=y_weight) | |
| x_diff = super().forward(pred[:, :, :, :-1], pred[:, :, :, 1:], weight=x_weight) | |
| loss = x_diff + y_diff | |
| return loss | |
| class PerceptualLoss(nn.Module): | |
| """Perceptual loss with commonly used style loss. | |
| Args: | |
| layer_weights (dict): The weight for each layer of vgg feature. | |
| Here is an example: {'conv5_4': 1.}, which means the conv5_4 | |
| feature layer (before relu5_4) will be extracted with weight | |
| 1.0 in calculating losses. | |
| vgg_type (str): The type of vgg network used as feature extractor. | |
| Default: 'vgg19'. | |
| use_input_norm (bool): If True, normalize the input image in vgg. | |
| Default: True. | |
| range_norm (bool): If True, norm images with range [-1, 1] to [0, 1]. | |
| Default: False. | |
| perceptual_weight (float): If `perceptual_weight > 0`, the perceptual | |
| loss will be calculated and the loss will multiplied by the | |
| weight. Default: 1.0. | |
| style_weight (float): If `style_weight > 0`, the style loss will be | |
| calculated and the loss will multiplied by the weight. | |
| Default: 0. | |
| criterion (str): Criterion used for perceptual loss. Default: 'l1'. | |
| """ | |
| def __init__(self, | |
| layer_weights, | |
| vgg_type='vgg19', | |
| use_input_norm=True, | |
| range_norm=False, | |
| perceptual_weight=1.0, | |
| style_weight=0., | |
| criterion='l1'): | |
| super(PerceptualLoss, self).__init__() | |
| self.perceptual_weight = perceptual_weight | |
| self.style_weight = style_weight | |
| self.layer_weights = layer_weights | |
| self.vgg = VGGFeatureExtractor( | |
| layer_name_list=list(layer_weights.keys()), | |
| vgg_type=vgg_type, | |
| use_input_norm=use_input_norm, | |
| range_norm=range_norm) | |
| self.criterion_type = criterion | |
| if self.criterion_type == 'l1': | |
| self.criterion = torch.nn.L1Loss() | |
| elif self.criterion_type == 'l2': | |
| self.criterion = torch.nn.L2loss() | |
| elif self.criterion_type == 'fro': | |
| self.criterion = None | |
| else: | |
| raise NotImplementedError(f'{criterion} criterion has not been supported.') | |
| def forward(self, x, gt): | |
| """Forward function. | |
| Args: | |
| x (Tensor): Input tensor with shape (n, c, h, w). | |
| gt (Tensor): Ground-truth tensor with shape (n, c, h, w). | |
| Returns: | |
| Tensor: Forward results. | |
| """ | |
| # extract vgg features | |
| x_features = self.vgg(x) | |
| gt_features = self.vgg(gt.detach()) | |
| # calculate perceptual loss | |
| if self.perceptual_weight > 0: | |
| percep_loss = 0 | |
| for k in x_features.keys(): | |
| if self.criterion_type == 'fro': | |
| percep_loss += torch.norm(x_features[k] - gt_features[k], p='fro') * self.layer_weights[k] | |
| else: | |
| percep_loss += self.criterion(x_features[k], gt_features[k]) * self.layer_weights[k] | |
| percep_loss *= self.perceptual_weight | |
| else: | |
| percep_loss = None | |
| # calculate style loss | |
| if self.style_weight > 0: | |
| style_loss = 0 | |
| for k in x_features.keys(): | |
| if self.criterion_type == 'fro': | |
| style_loss += torch.norm( | |
| self._gram_mat(x_features[k]) - self._gram_mat(gt_features[k]), p='fro') * self.layer_weights[k] | |
| else: | |
| style_loss += self.criterion(self._gram_mat(x_features[k]), self._gram_mat( | |
| gt_features[k])) * self.layer_weights[k] | |
| style_loss *= self.style_weight | |
| else: | |
| style_loss = None | |
| return percep_loss, style_loss | |
| def _gram_mat(self, x): | |
| """Calculate Gram matrix. | |
| Args: | |
| x (torch.Tensor): Tensor with shape of (n, c, h, w). | |
| Returns: | |
| torch.Tensor: Gram matrix. | |
| """ | |
| n, c, h, w = x.size() | |
| features = x.view(n, c, w * h) | |
| features_t = features.transpose(1, 2) | |
| gram = features.bmm(features_t) / (c * h * w) | |
| return gram | |
| class GANLoss(nn.Module): | |
| """Define GAN loss. | |
| Args: | |
| gan_type (str): Support 'vanilla', 'lsgan', 'wgan', 'hinge'. | |
| real_label_val (float): The value for real label. Default: 1.0. | |
| fake_label_val (float): The value for fake label. Default: 0.0. | |
| loss_weight (float): Loss weight. Default: 1.0. | |
| Note that loss_weight is only for generators; and it is always 1.0 | |
| for discriminators. | |
| """ | |
| def __init__(self, gan_type, real_label_val=1.0, fake_label_val=0.0, loss_weight=1.0): | |
| super(GANLoss, self).__init__() | |
| self.gan_type = gan_type | |
| self.loss_weight = loss_weight | |
| self.real_label_val = real_label_val | |
| self.fake_label_val = fake_label_val | |
| if self.gan_type == 'vanilla': | |
| self.loss = nn.BCEWithLogitsLoss() | |
| elif self.gan_type == 'lsgan': | |
| self.loss = nn.MSELoss() | |
| elif self.gan_type == 'wgan': | |
| self.loss = self._wgan_loss | |
| elif self.gan_type == 'wgan_softplus': | |
| self.loss = self._wgan_softplus_loss | |
| elif self.gan_type == 'hinge': | |
| self.loss = nn.ReLU() | |
| else: | |
| raise NotImplementedError(f'GAN type {self.gan_type} is not implemented.') | |
| def _wgan_loss(self, input, target): | |
| """wgan loss. | |
| Args: | |
| input (Tensor): Input tensor. | |
| target (bool): Target label. | |
| Returns: | |
| Tensor: wgan loss. | |
| """ | |
| return -input.mean() if target else input.mean() | |
| def _wgan_softplus_loss(self, input, target): | |
| """wgan loss with soft plus. softplus is a smooth approximation to the | |
| ReLU function. | |
| In StyleGAN2, it is called: | |
| Logistic loss for discriminator; | |
| Non-saturating loss for generator. | |
| Args: | |
| input (Tensor): Input tensor. | |
| target (bool): Target label. | |
| Returns: | |
| Tensor: wgan loss. | |
| """ | |
| return F.softplus(-input).mean() if target else F.softplus(input).mean() | |
| def get_target_label(self, input, target_is_real): | |
| """Get target label. | |
| Args: | |
| input (Tensor): Input tensor. | |
| target_is_real (bool): Whether the target is real or fake. | |
| Returns: | |
| (bool | Tensor): Target tensor. Return bool for wgan, otherwise, | |
| return Tensor. | |
| """ | |
| if self.gan_type in ['wgan', 'wgan_softplus']: | |
| return target_is_real | |
| target_val = (self.real_label_val if target_is_real else self.fake_label_val) | |
| return input.new_ones(input.size()) * target_val | |
| def forward(self, input, target_is_real, is_disc=False): | |
| """ | |
| Args: | |
| input (Tensor): The input for the loss module, i.e., the network | |
| prediction. | |
| target_is_real (bool): Whether the targe is real or fake. | |
| is_disc (bool): Whether the loss for discriminators or not. | |
| Default: False. | |
| Returns: | |
| Tensor: GAN loss value. | |
| """ | |
| target_label = self.get_target_label(input, target_is_real) | |
| if self.gan_type == 'hinge': | |
| if is_disc: # for discriminators in hinge-gan | |
| input = -input if target_is_real else input | |
| loss = self.loss(1 + input).mean() | |
| else: # for generators in hinge-gan | |
| loss = -input.mean() | |
| else: # other gan types | |
| loss = self.loss(input, target_label) | |
| # loss_weight is always 1.0 for discriminators | |
| return loss if is_disc else loss * self.loss_weight | |
| class MultiScaleGANLoss(GANLoss): | |
| """ | |
| MultiScaleGANLoss accepts a list of predictions | |
| """ | |
| def __init__(self, gan_type, real_label_val=1.0, fake_label_val=0.0, loss_weight=1.0): | |
| super(MultiScaleGANLoss, self).__init__(gan_type, real_label_val, fake_label_val, loss_weight) | |
| def forward(self, input, target_is_real, is_disc=False): | |
| """ | |
| The input is a list of tensors, or a list of (a list of tensors) | |
| """ | |
| if isinstance(input, list): | |
| loss = 0 | |
| for pred_i in input: | |
| if isinstance(pred_i, list): | |
| # Only compute GAN loss for the last layer | |
| # in case of multiscale feature matching | |
| pred_i = pred_i[-1] | |
| # Safe operation: 0-dim tensor calling self.mean() does nothing | |
| loss_tensor = super().forward(pred_i, target_is_real, is_disc).mean() | |
| loss += loss_tensor | |
| return loss / len(input) | |
| else: | |
| return super().forward(input, target_is_real, is_disc) | |
| def r1_penalty(real_pred, real_img): | |
| """R1 regularization for discriminator. The core idea is to | |
| penalize the gradient on real data alone: when the | |
| generator distribution produces the true data distribution | |
| and the discriminator is equal to 0 on the data manifold, the | |
| gradient penalty ensures that the discriminator cannot create | |
| a non-zero gradient orthogonal to the data manifold without | |
| suffering a loss in the GAN game. | |
| Ref: | |
| Eq. 9 in Which training methods for GANs do actually converge. | |
| """ | |
| grad_real = autograd.grad(outputs=real_pred.sum(), inputs=real_img, create_graph=True)[0] | |
| grad_penalty = grad_real.pow(2).view(grad_real.shape[0], -1).sum(1).mean() | |
| return grad_penalty | |
| def g_path_regularize(fake_img, latents, mean_path_length, decay=0.01): | |
| noise = torch.randn_like(fake_img) / math.sqrt(fake_img.shape[2] * fake_img.shape[3]) | |
| grad = autograd.grad(outputs=(fake_img * noise).sum(), inputs=latents, create_graph=True)[0] | |
| path_lengths = torch.sqrt(grad.pow(2).sum(2).mean(1)) | |
| path_mean = mean_path_length + decay * (path_lengths.mean() - mean_path_length) | |
| path_penalty = (path_lengths - path_mean).pow(2).mean() | |
| return path_penalty, path_lengths.detach().mean(), path_mean.detach() | |
| def gradient_penalty_loss(discriminator, real_data, fake_data, weight=None): | |
| """Calculate gradient penalty for wgan-gp. | |
| Args: | |
| discriminator (nn.Module): Network for the discriminator. | |
| real_data (Tensor): Real input data. | |
| fake_data (Tensor): Fake input data. | |
| weight (Tensor): Weight tensor. Default: None. | |
| Returns: | |
| Tensor: A tensor for gradient penalty. | |
| """ | |
| batch_size = real_data.size(0) | |
| alpha = real_data.new_tensor(torch.rand(batch_size, 1, 1, 1)) | |
| # interpolate between real_data and fake_data | |
| interpolates = alpha * real_data + (1. - alpha) * fake_data | |
| interpolates = autograd.Variable(interpolates, requires_grad=True) | |
| disc_interpolates = discriminator(interpolates) | |
| gradients = autograd.grad( | |
| outputs=disc_interpolates, | |
| inputs=interpolates, | |
| grad_outputs=torch.ones_like(disc_interpolates), | |
| create_graph=True, | |
| retain_graph=True, | |
| only_inputs=True)[0] | |
| if weight is not None: | |
| gradients = gradients * weight | |
| gradients_penalty = ((gradients.norm(2, dim=1) - 1)**2).mean() | |
| if weight is not None: | |
| gradients_penalty /= torch.mean(weight) | |
| return gradients_penalty | |
| class GANFeatLoss(nn.Module): | |
| """Define feature matching loss for gans | |
| Args: | |
| criterion (str): Support 'l1', 'l2', 'charbonnier'. | |
| loss_weight (float): Loss weight. Default: 1.0. | |
| reduction (str): Specifies the reduction to apply to the output. | |
| Supported choices are 'none' | 'mean' | 'sum'. Default: 'mean'. | |
| """ | |
| def __init__(self, criterion='l1', loss_weight=1.0, reduction='mean'): | |
| super(GANFeatLoss, self).__init__() | |
| if criterion == 'l1': | |
| self.loss_op = L1Loss(loss_weight, reduction) | |
| elif criterion == 'l2': | |
| self.loss_op = MSELoss(loss_weight, reduction) | |
| elif criterion == 'charbonnier': | |
| self.loss_op = CharbonnierLoss(loss_weight, reduction) | |
| else: | |
| raise ValueError(f'Unsupported loss mode: {criterion}. Supported ones are: l1|l2|charbonnier') | |
| self.loss_weight = loss_weight | |
| def forward(self, pred_fake, pred_real): | |
| num_d = len(pred_fake) | |
| loss = 0 | |
| for i in range(num_d): # for each discriminator | |
| # last output is the final prediction, exclude it | |
| num_intermediate_outputs = len(pred_fake[i]) - 1 | |
| for j in range(num_intermediate_outputs): # for each layer output | |
| unweighted_loss = self.loss_op(pred_fake[i][j], pred_real[i][j].detach()) | |
| loss += unweighted_loss / num_d | |
| return loss * self.loss_weight | |