Spaces:
Runtime error
Runtime error
Create /vae/vae.py
Browse files
opensora/models/ae/imagebase/vae/vae.py
ADDED
|
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from einops import rearrange
|
| 2 |
+
from torch import nn
|
| 3 |
+
from diffusers.models import AutoencoderKL
|
| 4 |
+
|
| 5 |
+
|
| 6 |
+
class HFVAEWrapper(nn.Module):
|
| 7 |
+
def __init__(self, hfvae='mse'):
|
| 8 |
+
super(HFVAEWrapper, self).__init__()
|
| 9 |
+
self.vae = AutoencoderKL.from_pretrained(hfvae, cache_dir='cache_dir')
|
| 10 |
+
def encode(self, x): # b c h w
|
| 11 |
+
t = 0
|
| 12 |
+
if x.ndim == 5:
|
| 13 |
+
b, c, t, h, w = x.shape
|
| 14 |
+
x = rearrange(x, 'b c t h w -> (b t) c h w').contiguous()
|
| 15 |
+
x = self.vae.encode(x).latent_dist.sample().mul_(0.18215)
|
| 16 |
+
if t != 0:
|
| 17 |
+
x = rearrange(x, '(b t) c h w -> b c t h w', t=t).contiguous()
|
| 18 |
+
return x
|
| 19 |
+
def decode(self, x):
|
| 20 |
+
t = 0
|
| 21 |
+
if x.ndim == 5:
|
| 22 |
+
b, c, t, h, w = x.shape
|
| 23 |
+
x = rearrange(x, 'b c t h w -> (b t) c h w').contiguous()
|
| 24 |
+
x = self.vae.decode(x / 0.18215).sample
|
| 25 |
+
if t != 0:
|
| 26 |
+
x = rearrange(x, '(b t) c h w -> b t c h w', t=t).contiguous()
|
| 27 |
+
return x
|
| 28 |
+
|
| 29 |
+
class SDVAEWrapper(nn.Module):
|
| 30 |
+
def __init__(self):
|
| 31 |
+
super(SDVAEWrapper, self).__init__()
|
| 32 |
+
raise NotImplementedError
|
| 33 |
+
|
| 34 |
+
def encode(self, x): # b c h w
|
| 35 |
+
raise NotImplementedError
|
| 36 |
+
|
| 37 |
+
def decode(self, x):
|
| 38 |
+
raise NotImplementedError
|