Spaces:
Runtime error
Runtime error
Commit
·
47a6c20
1
Parent(s):
5596de2
Reformat code to be generic, adding new models in model.py
Browse files- __pycache__/model.cpython-311.pyc +0 -0
- __pycache__/script.cpython-311.pyc +0 -0
- __pycache__/utils.cpython-311.pyc +0 -0
- __pycache__/utils.cpython-39.pyc +0 -0
- app.py +10 -122
- model.py +91 -0
- utils.py +105 -12
__pycache__/model.cpython-311.pyc
ADDED
|
Binary file (3.43 kB). View file
|
|
|
__pycache__/script.cpython-311.pyc
CHANGED
|
Binary files a/__pycache__/script.cpython-311.pyc and b/__pycache__/script.cpython-311.pyc differ
|
|
|
__pycache__/utils.cpython-311.pyc
CHANGED
|
Binary files a/__pycache__/utils.cpython-311.pyc and b/__pycache__/utils.cpython-311.pyc differ
|
|
|
__pycache__/utils.cpython-39.pyc
CHANGED
|
Binary files a/__pycache__/utils.cpython-39.pyc and b/__pycache__/utils.cpython-39.pyc differ
|
|
|
app.py
CHANGED
|
@@ -1,125 +1,13 @@
|
|
| 1 |
-
from
|
| 2 |
-
SentenceSimilarity,
|
| 3 |
-
pos_tagging,
|
| 4 |
-
text_analysis,
|
| 5 |
-
text_interface,
|
| 6 |
-
sentence_similarity,
|
| 7 |
-
)
|
| 8 |
-
from script import details
|
| 9 |
-
from transformers import pipeline
|
| 10 |
import gradio as gr
|
| 11 |
-
from functools import partial
|
| 12 |
-
|
| 13 |
-
pipes = {
|
| 14 |
-
"Sentiment Analysis": pipeline(
|
| 15 |
-
"text-classification",
|
| 16 |
-
model="StevenLimcorn/indonesian-roberta-base-emotion-classifier",
|
| 17 |
-
tokenizer="StevenLimcorn/indonesian-roberta-base-emotion-classifier",
|
| 18 |
-
),
|
| 19 |
-
"Emotion Classifier": pipeline(
|
| 20 |
-
"text-classification",
|
| 21 |
-
model="w11wo/indonesian-roberta-base-sentiment-classifier",
|
| 22 |
-
tokenizer="w11wo/indonesian-roberta-base-sentiment-classifier",
|
| 23 |
-
),
|
| 24 |
-
"summarization": pipeline(
|
| 25 |
-
"summarization",
|
| 26 |
-
model="LazarusNLP/IndoNanoT5-base-IndoSum",
|
| 27 |
-
tokenizer="LazarusNLP/IndoNanoT5-base-IndoSum",
|
| 28 |
-
),
|
| 29 |
-
"sentence-similarity": SentenceSimilarity(model="LazarusNLP/all-indobert-base-v2"),
|
| 30 |
-
"POS Tagging": pipeline(model="w11wo/indonesian-roberta-base-posp-tagger"),
|
| 31 |
-
}
|
| 32 |
|
| 33 |
if __name__ == "__main__":
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
)
|
| 44 |
-
# Pos Tagging
|
| 45 |
-
pos_interface = gr.Interface(
|
| 46 |
-
fn=partial(pos_tagging, pipe=pipes["POS Tagging"]),
|
| 47 |
-
inputs=[
|
| 48 |
-
gr.Textbox(placeholder="Masukan kalimat di sini...", label="Input Text"),
|
| 49 |
-
],
|
| 50 |
-
outputs=[gr.HighlightedText()],
|
| 51 |
-
title="POS Tagging",
|
| 52 |
-
examples=details["POS Tagging"]["examples"],
|
| 53 |
-
description=details["POS Tagging"]["description"],
|
| 54 |
-
allow_flagging="never",
|
| 55 |
-
)
|
| 56 |
-
# Text Analysis
|
| 57 |
-
with gr.Blocks() as text_analysis_interface:
|
| 58 |
-
gr.Markdown("# Text Analysis")
|
| 59 |
-
gr.Markdown(details["Text Analysis"]["description"])
|
| 60 |
-
input_text = gr.Textbox(lines=5, label="Input Text")
|
| 61 |
-
with gr.Row():
|
| 62 |
-
smsa = gr.Label(label="Sentiment Analysis")
|
| 63 |
-
emot = gr.Label(label="Emotion Classification")
|
| 64 |
-
pos = gr.HighlightedText(label="POS Tagging")
|
| 65 |
-
btn = gr.Button("Analyze")
|
| 66 |
-
btn.click(
|
| 67 |
-
fn=partial(text_analysis, pipes=pipes),
|
| 68 |
-
inputs=[input_text],
|
| 69 |
-
outputs=[smsa, emot, pos],
|
| 70 |
-
)
|
| 71 |
-
gr.Examples(
|
| 72 |
-
details["Text Analysis"]["examples"],
|
| 73 |
-
inputs=input_text,
|
| 74 |
-
outputs=[smsa, emot, pos],
|
| 75 |
-
)
|
| 76 |
-
|
| 77 |
-
with gr.Blocks() as sentence_similarity_interface:
|
| 78 |
-
gr.Markdown("# Document Search 🔍")
|
| 79 |
-
gr.Markdown(details["sentence-similarity"]["description"])
|
| 80 |
-
with gr.Row():
|
| 81 |
-
with gr.Column():
|
| 82 |
-
input_text = gr.Textbox(lines=5, label="Query")
|
| 83 |
-
file_input = gr.File(
|
| 84 |
-
label="Documents", file_types=[".txt"], file_count="multiple"
|
| 85 |
-
)
|
| 86 |
-
button = gr.Button("Search...")
|
| 87 |
-
output = gr.Label()
|
| 88 |
-
button.click(
|
| 89 |
-
fn=partial(sentence_similarity, pipe=pipes["sentence-similarity"]),
|
| 90 |
-
inputs=[input_text, file_input],
|
| 91 |
-
outputs=[output],
|
| 92 |
-
)
|
| 93 |
-
|
| 94 |
-
demo_interface = {
|
| 95 |
-
"demo": [
|
| 96 |
-
text_interface(
|
| 97 |
-
pipes[name],
|
| 98 |
-
details[name]["examples"],
|
| 99 |
-
name,
|
| 100 |
-
name,
|
| 101 |
-
details[name]["description"],
|
| 102 |
-
)
|
| 103 |
-
for name in classifiers
|
| 104 |
-
]
|
| 105 |
-
+ [
|
| 106 |
-
sentence_similarity_interface,
|
| 107 |
-
summary_interface,
|
| 108 |
-
pos_interface,
|
| 109 |
-
text_analysis_interface,
|
| 110 |
-
],
|
| 111 |
-
"titles": classifiers
|
| 112 |
-
+ ["Document Search", "Summarization", "POS Tagging", "Text Analysis"],
|
| 113 |
-
}
|
| 114 |
-
|
| 115 |
-
# with gr.Blocks() as demo:
|
| 116 |
-
# with gr.Column():
|
| 117 |
-
# gr.Markdown("# Title")
|
| 118 |
-
# gr.TabbedInterface(
|
| 119 |
-
# demo_interface["demo"], demo_interface["titles"], theme="soft"
|
| 120 |
-
# )
|
| 121 |
-
|
| 122 |
-
demo = gr.TabbedInterface(
|
| 123 |
-
demo_interface["demo"], demo_interface["titles"], theme="soft"
|
| 124 |
-
)
|
| 125 |
-
demo.launch()
|
|
|
|
| 1 |
+
from model import models
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
|
| 4 |
if __name__ == "__main__":
|
| 5 |
+
exclude_keys, interfaces, titles = ["interface"], [], []
|
| 6 |
+
for model, args in models.items():
|
| 7 |
+
interface = args["interface"]
|
| 8 |
+
excluded_args = {k: args[k] for k in set(list(args.keys())) - set(exclude_keys)}
|
| 9 |
+
interfaces.append(interface(**excluded_args))
|
| 10 |
+
titles.append(model)
|
| 11 |
+
|
| 12 |
+
demo = gr.TabbedInterface(interfaces, titles, theme="soft")
|
| 13 |
+
demo.launch(debug=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
model.py
ADDED
|
@@ -0,0 +1,91 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from utils import (
|
| 2 |
+
text_analysis_interface,
|
| 3 |
+
token_classification_interface,
|
| 4 |
+
search_interface,
|
| 5 |
+
text_interface,
|
| 6 |
+
SentenceSimilarity,
|
| 7 |
+
)
|
| 8 |
+
from transformers import pipeline
|
| 9 |
+
|
| 10 |
+
models = {
|
| 11 |
+
"Text Analysis": {
|
| 12 |
+
"title": "# Text Analysis",
|
| 13 |
+
"examples": [
|
| 14 |
+
"Siapa sih di dunia yg ngga punya hater? Rasul yg mulia aja punya. Budha aja punya. Nabi Isa aja punya. Nah apalagi eloh ama gueh .... ya kaaan",
|
| 15 |
+
"saya ganteng, kalau tidak-suka mati saja kamu",
|
| 16 |
+
"Bahaha.. dia ke kasir after me. Sambil ngangkat keresek belanjaanku, masih sempet liat mas nya nyodorin barang belanjaannya",
|
| 17 |
+
],
|
| 18 |
+
"output_label": ["Sentiment Analysis", "Emotion Classifier", "POS Tagging"],
|
| 19 |
+
"desc": "A tool to showcase the full capabilities of text analysis LazarusNLP has to offer.",
|
| 20 |
+
"interface": text_analysis_interface,
|
| 21 |
+
"pipe": [
|
| 22 |
+
pipeline(
|
| 23 |
+
"text-classification",
|
| 24 |
+
model="w11wo/indonesian-roberta-base-sentiment-classifier",
|
| 25 |
+
tokenizer="w11wo/indonesian-roberta-base-sentiment-classifier",
|
| 26 |
+
),
|
| 27 |
+
pipeline(
|
| 28 |
+
"text-classification",
|
| 29 |
+
model="StevenLimcorn/indonesian-roberta-base-emotion-classifier",
|
| 30 |
+
tokenizer="StevenLimcorn/indonesian-roberta-base-emotion-classifier",
|
| 31 |
+
),
|
| 32 |
+
pipeline(model="w11wo/indonesian-roberta-base-posp-tagger"),
|
| 33 |
+
],
|
| 34 |
+
},
|
| 35 |
+
"Sentiment Analysis": {
|
| 36 |
+
"title": "Sentiment Analysis",
|
| 37 |
+
"examples": [
|
| 38 |
+
"saya kecewa karena pengeditan biodata penumpang dilakukan by sistem tanpa konfirmasi dan solusi permasalahan nya pun dianggap sepele karena dibiarkan begitu saja sedang pelayanan pelanggan yang sudah berkali-berkali dihubungi pun hanya seperti mengulur waktu.",
|
| 39 |
+
"saya sudah transfer ratusan ribu dan sesuai nominal transfer. tapi tiket belum muncul juga. harus diwaspadai ini aplikasi ini.",
|
| 40 |
+
"keren sekali aplikasi ini bisa menunjukan data diri secara detail, sangat di rekomendasikan untuk di pakai.",
|
| 41 |
+
],
|
| 42 |
+
"output_label": "Sentiment Analysis",
|
| 43 |
+
"desc": "A sentiment-text-classification model based on the RoBERTa model. The model was originally the pre-trained Indonesian RoBERTa Base model, which is then fine-tuned on indonlu's SmSA dataset consisting of Indonesian comments and reviews.",
|
| 44 |
+
"interface": text_interface,
|
| 45 |
+
"pipe": pipeline(
|
| 46 |
+
"text-classification",
|
| 47 |
+
model="w11wo/indonesian-roberta-base-sentiment-classifier",
|
| 48 |
+
tokenizer="w11wo/indonesian-roberta-base-sentiment-classifier",
|
| 49 |
+
),
|
| 50 |
+
},
|
| 51 |
+
"Emotion Detection": {
|
| 52 |
+
"title": "Emotion Classifier",
|
| 53 |
+
"examples": [
|
| 54 |
+
"iya semoga itu karya terbaik mu adalah skripsi mu dan lucua2n mu tapi harapan aku dari kamu adalah kesembuhanmu nold",
|
| 55 |
+
"saya ganteng, kalau tidak-suka mati saja kamu",
|
| 56 |
+
"Bahaha.. dia ke kasir after me. Sambil ngangkat keresek belanjaanku, masih sempet liat mas nya nyodorin barang belanjaannya",
|
| 57 |
+
],
|
| 58 |
+
"output_label": "Emotion Classifier",
|
| 59 |
+
"desc": "An emotion classifier based on the RoBERTa model. The model was originally the pre-trained Indonesian RoBERTa Base model, which is then fine-tuned on indonlu's EmoT dataset",
|
| 60 |
+
"interface": text_interface,
|
| 61 |
+
"pipe": pipeline(
|
| 62 |
+
"text-classification",
|
| 63 |
+
model="StevenLimcorn/indonesian-roberta-base-emotion-classifier",
|
| 64 |
+
tokenizer="StevenLimcorn/indonesian-roberta-base-emotion-classifier",
|
| 65 |
+
),
|
| 66 |
+
},
|
| 67 |
+
# "summarization": {
|
| 68 |
+
# "examples": [],
|
| 69 |
+
# "desc": "This model is a fine-tuned version of LazarusNLP/IndoNanoT5-base on the indonlg dataset.",
|
| 70 |
+
# },
|
| 71 |
+
"POS Tagging": {
|
| 72 |
+
"title": "POS Tagging",
|
| 73 |
+
"examples": [
|
| 74 |
+
"iya semoga itu karya terbaik mu adalah skripsi mu dan lucua2n mu tapi harapan aku dari kamu adalah kesembuhanmu nold",
|
| 75 |
+
"saya ganteng, kalau tidak-suka mati saja kamu",
|
| 76 |
+
"Bahaha.. dia ke kasir after me. Sambil ngangkat keresek belanjaanku, masih sempet liat mas nya nyodorin barang belanjaannya",
|
| 77 |
+
],
|
| 78 |
+
"output_label": "POS Tagging",
|
| 79 |
+
"desc": "A part-of-speech token-classification model based on the RoBERTa model. The model was originally the pre-trained Indonesian RoBERTa Base model, which is then fine-tuned on indonlu's POSP dataset consisting of tag-labelled news.",
|
| 80 |
+
"interface": token_classification_interface,
|
| 81 |
+
"pipe": pipeline(model="w11wo/indonesian-roberta-base-posp-tagger"),
|
| 82 |
+
},
|
| 83 |
+
"Document Search": {
|
| 84 |
+
"title": "# Document Search 🔍",
|
| 85 |
+
"examples": [],
|
| 86 |
+
"output_label": "Top 5 related documents",
|
| 87 |
+
"desc": "A semantic search tool to get the most related documents 📖 based on user's query.",
|
| 88 |
+
"interface": search_interface,
|
| 89 |
+
"pipe": SentenceSimilarity(model="LazarusNLP/all-indobert-base-v2"),
|
| 90 |
+
},
|
| 91 |
+
}
|
utils.py
CHANGED
|
@@ -1,11 +1,14 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
from functools import partial
|
| 3 |
-
from transformers import pipeline
|
| 4 |
from sentence_transformers import SentenceTransformer, util
|
| 5 |
from scipy.special import softmax
|
| 6 |
import os
|
| 7 |
|
| 8 |
|
|
|
|
|
|
|
|
|
|
| 9 |
class SentenceSimilarity:
|
| 10 |
|
| 11 |
def __init__(self, model: str):
|
|
@@ -31,11 +34,31 @@ def sentence_similarity(text: str, documents: list[str], pipe: SentenceSimilarit
|
|
| 31 |
|
| 32 |
|
| 33 |
# Text Analysis
|
| 34 |
-
def cls_inference(input: list[str], pipe: pipeline) ->
|
| 35 |
results = pipe(input, top_k=None)
|
| 36 |
return {x["label"]: x["score"] for x in results}
|
| 37 |
|
| 38 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 39 |
def text_interface(
|
| 40 |
pipe: pipeline, examples: list[str], output_label: str, title: str, desc: str
|
| 41 |
):
|
|
@@ -52,15 +75,85 @@ def text_interface(
|
|
| 52 |
)
|
| 53 |
|
| 54 |
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 59 |
|
| 60 |
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
from functools import partial
|
| 3 |
+
from transformers import pipeline, pipelines
|
| 4 |
from sentence_transformers import SentenceTransformer, util
|
| 5 |
from scipy.special import softmax
|
| 6 |
import os
|
| 7 |
|
| 8 |
|
| 9 |
+
######################
|
| 10 |
+
##### INFERENCE ######
|
| 11 |
+
######################
|
| 12 |
class SentenceSimilarity:
|
| 13 |
|
| 14 |
def __init__(self, model: str):
|
|
|
|
| 34 |
|
| 35 |
|
| 36 |
# Text Analysis
|
| 37 |
+
def cls_inference(input: list[str], pipe: pipeline) -> dict:
|
| 38 |
results = pipe(input, top_k=None)
|
| 39 |
return {x["label"]: x["score"] for x in results}
|
| 40 |
|
| 41 |
|
| 42 |
+
# POSP
|
| 43 |
+
def tagging(text: str, pipe: pipeline):
|
| 44 |
+
output = pipe(text)
|
| 45 |
+
return {"text": text, "entities": output}
|
| 46 |
+
|
| 47 |
+
|
| 48 |
+
# Text Analysis
|
| 49 |
+
def text_analysis(text, pipes: list[pipeline]):
|
| 50 |
+
outputs = []
|
| 51 |
+
for pipe in pipes:
|
| 52 |
+
if isinstance(pipe, pipelines.token_classification.TokenClassificationPipeline):
|
| 53 |
+
outputs.append(tagging(text, pipe))
|
| 54 |
+
else:
|
| 55 |
+
outputs.append(cls_inference(text, pipe))
|
| 56 |
+
return outputs
|
| 57 |
+
|
| 58 |
+
|
| 59 |
+
######################
|
| 60 |
+
##### INTERFACE ######
|
| 61 |
+
######################
|
| 62 |
def text_interface(
|
| 63 |
pipe: pipeline, examples: list[str], output_label: str, title: str, desc: str
|
| 64 |
):
|
|
|
|
| 75 |
)
|
| 76 |
|
| 77 |
|
| 78 |
+
def search_interface(
|
| 79 |
+
pipe: SentenceSimilarity,
|
| 80 |
+
examples: list[str],
|
| 81 |
+
output_label: str,
|
| 82 |
+
title: str,
|
| 83 |
+
desc: str,
|
| 84 |
+
):
|
| 85 |
+
with gr.Blocks() as sentence_similarity_interface:
|
| 86 |
+
gr.Markdown(title)
|
| 87 |
+
gr.Markdown(desc)
|
| 88 |
+
with gr.Row():
|
| 89 |
+
with gr.Column():
|
| 90 |
+
input_text = gr.Textbox(lines=5, label="Query")
|
| 91 |
+
file_input = gr.File(
|
| 92 |
+
label="Documents", file_types=[".txt"], file_count="multiple"
|
| 93 |
+
)
|
| 94 |
+
button = gr.Button("Search...")
|
| 95 |
+
output = gr.Label(output_label)
|
| 96 |
+
button.click(
|
| 97 |
+
fn=partial(sentence_similarity, pipe=pipe),
|
| 98 |
+
inputs=[input_text, file_input],
|
| 99 |
+
outputs=[output],
|
| 100 |
+
)
|
| 101 |
+
return sentence_similarity_interface
|
| 102 |
|
| 103 |
|
| 104 |
+
def token_classification_interface(
|
| 105 |
+
pipe: pipeline, examples: list[str], output_label: str, title: str, desc: str
|
| 106 |
+
):
|
| 107 |
+
return gr.Interface(
|
| 108 |
+
fn=partial(tagging, pipe=pipe),
|
| 109 |
+
inputs=[
|
| 110 |
+
gr.Textbox(placeholder="Masukan kalimat di sini...", label="Input Text"),
|
| 111 |
+
],
|
| 112 |
+
outputs=[gr.HighlightedText(label=output_label)],
|
| 113 |
+
title=title,
|
| 114 |
+
examples=examples,
|
| 115 |
+
description=desc,
|
| 116 |
+
allow_flagging="never",
|
| 117 |
+
)
|
| 118 |
+
|
| 119 |
+
|
| 120 |
+
def text_analysis_interface(
|
| 121 |
+
pipe: list, examples: list[str], output_label: str, title: str, desc: str
|
| 122 |
+
):
|
| 123 |
+
with gr.Blocks() as text_analysis_interface:
|
| 124 |
+
gr.Markdown(title)
|
| 125 |
+
gr.Markdown(desc)
|
| 126 |
+
input_text = gr.Textbox(lines=5, label="Input Text")
|
| 127 |
+
with gr.Row():
|
| 128 |
+
outputs = [
|
| 129 |
+
(
|
| 130 |
+
gr.HighlightedText(label=label)
|
| 131 |
+
if isinstance(
|
| 132 |
+
p, pipelines.token_classification.TokenClassificationPipeline
|
| 133 |
+
)
|
| 134 |
+
else gr.Label(label=label)
|
| 135 |
+
)
|
| 136 |
+
for label, p in zip(output_label, pipe)
|
| 137 |
+
]
|
| 138 |
+
btn = gr.Button("Analyze")
|
| 139 |
+
btn.click(
|
| 140 |
+
fn=partial(text_analysis, pipes=pipe),
|
| 141 |
+
inputs=[input_text],
|
| 142 |
+
outputs=outputs,
|
| 143 |
+
)
|
| 144 |
+
gr.Examples(
|
| 145 |
+
examples=examples,
|
| 146 |
+
inputs=input_text,
|
| 147 |
+
outputs=outputs,
|
| 148 |
+
)
|
| 149 |
+
return text_analysis_interface
|
| 150 |
+
|
| 151 |
+
|
| 152 |
+
# Summary
|
| 153 |
+
# summary_interface = gr.Interface.from_pipeline(
|
| 154 |
+
# pipes["summarization"],
|
| 155 |
+
# title="Summarization",
|
| 156 |
+
# examples=details["summarization"]["examples"],
|
| 157 |
+
# description=details["summarization"]["description"],
|
| 158 |
+
# allow_flagging="never",
|
| 159 |
+
# )
|