Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -14,20 +14,20 @@ from huggingface_hub import hf_hub_download
|
|
| 14 |
HF_MODEL_REPO_ID = "LeafNet75/Leaf-Annotate-v2"
|
| 15 |
DEVICE = "cpu"
|
| 16 |
IMG_SIZE = 256
|
|
|
|
| 17 |
|
| 18 |
-
# --- DATA MODELS FOR API
|
| 19 |
class InferenceRequest(BaseModel):
|
| 20 |
image: str # base64 encoded image string
|
| 21 |
scribble_mask: str # base64 encoded scribble mask string
|
| 22 |
|
| 23 |
class InferenceResponse(BaseModel):
|
| 24 |
-
predicted_mask: str # base64 encoded
|
| 25 |
|
| 26 |
# --- INITIALIZE FASTAPI APP ---
|
| 27 |
app = FastAPI()
|
| 28 |
|
| 29 |
# --- LOAD MODEL ON STARTUP ---
|
| 30 |
-
# The model is loaded once when the application starts to ensure fast inference times.
|
| 31 |
def load_model():
|
| 32 |
print(f"Loading model '{HF_MODEL_REPO_ID}'...")
|
| 33 |
model_path = hf_hub_download(repo_id=HF_MODEL_REPO_ID, filename="best_model.pth")
|
|
@@ -47,62 +47,48 @@ def load_model():
|
|
| 47 |
model = load_model()
|
| 48 |
|
| 49 |
# --- HELPER FUNCTIONS ---
|
| 50 |
-
def
|
| 51 |
-
# Remove the "data:image/..." header
|
| 52 |
header, encoded = base64_string.split(",", 1)
|
| 53 |
img_data = base64.b64decode(encoded)
|
| 54 |
-
|
| 55 |
-
# Use Pillow to open the image data and convert to OpenCV format
|
| 56 |
pil_image = Image.open(io.BytesIO(img_data))
|
| 57 |
return cv2.cvtColor(np.array(pil_image), cv2.COLOR_RGBA2BGRA)
|
| 58 |
|
| 59 |
def cv2_to_base64(image: np.ndarray):
|
| 60 |
-
# Convert image back to a base64 string to send to the frontend
|
| 61 |
_, buffer = cv2.imencode('.png', image)
|
| 62 |
png_as_text = base64.b64encode(buffer).decode('utf-8')
|
| 63 |
return f"data:image/png;base64,{png_as_text}"
|
| 64 |
|
| 65 |
-
|
| 66 |
# --- API ENDPOINTS ---
|
| 67 |
@app.get("/")
|
| 68 |
def read_root():
|
| 69 |
-
# Serve the frontend HTML file
|
| 70 |
return FileResponse('index.html')
|
| 71 |
|
| 72 |
@app.post("/predict", response_model=InferenceResponse)
|
| 73 |
async def predict(request: InferenceRequest):
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
scribble_cv = base64_to_cv2(request.scribble_mask)
|
| 77 |
|
| 78 |
-
# Ensure scribble is grayscale
|
| 79 |
if len(scribble_cv.shape) > 2 and scribble_cv.shape[2] > 1:
|
| 80 |
scribble_cv = cv2.cvtColor(scribble_cv, cv2.COLOR_BGRA2GRAY)
|
| 81 |
|
| 82 |
h, w, _ = image_cv.shape
|
| 83 |
|
| 84 |
-
# 2. Preprocess the data for the model
|
| 85 |
image_resized = cv2.resize(cv2.cvtColor(image_cv, cv2.COLOR_BGRA2RGB), (IMG_SIZE, IMG_SIZE), interpolation=cv2.INTER_AREA)
|
| 86 |
scribble_resized = cv2.resize(scribble_cv, (IMG_SIZE, IMG_SIZE), interpolation=cv2.INTER_NEAREST)
|
| 87 |
|
| 88 |
image_tensor = torch.from_numpy(image_resized.astype(np.float32)).permute(2, 0, 1) / 255.0
|
| 89 |
scribble_tensor = torch.from_numpy(scribble_resized.astype(np.float32)).unsqueeze(0) / 255.0
|
| 90 |
-
|
| 91 |
input_tensor = torch.cat([image_tensor, scribble_tensor], dim=0).unsqueeze(0).to(DEVICE)
|
| 92 |
|
| 93 |
-
# 3. Run Inference
|
| 94 |
with torch.no_grad():
|
| 95 |
output = model(input_tensor)
|
| 96 |
|
| 97 |
-
# 4. Post-process the output
|
| 98 |
probs = torch.sigmoid(output)
|
| 99 |
-
binary_mask = (probs >
|
| 100 |
|
| 101 |
-
# Resize mask to the original input canvas size
|
| 102 |
output_mask_resized = cv2.resize(binary_mask, (w, h), interpolation=cv2.INTER_NEAREST)
|
| 103 |
output_mask_uint8 = (output_mask_resized * 255).astype(np.uint8)
|
| 104 |
|
| 105 |
-
# 5. Encode the result and return
|
| 106 |
result_base64 = cv2_to_base64(output_mask_uint8)
|
| 107 |
|
| 108 |
return InferenceResponse(predicted_mask=result_base64)
|
|
|
|
| 14 |
HF_MODEL_REPO_ID = "LeafNet75/Leaf-Annotate-v2"
|
| 15 |
DEVICE = "cpu"
|
| 16 |
IMG_SIZE = 256
|
| 17 |
+
CONFIDENCE_THRESHOLD = 0.5
|
| 18 |
|
| 19 |
+
# --- DATA MODELS FOR API ---
|
| 20 |
class InferenceRequest(BaseModel):
|
| 21 |
image: str # base64 encoded image string
|
| 22 |
scribble_mask: str # base64 encoded scribble mask string
|
| 23 |
|
| 24 |
class InferenceResponse(BaseModel):
|
| 25 |
+
predicted_mask: str # base64 encoded raw binary mask string
|
| 26 |
|
| 27 |
# --- INITIALIZE FASTAPI APP ---
|
| 28 |
app = FastAPI()
|
| 29 |
|
| 30 |
# --- LOAD MODEL ON STARTUP ---
|
|
|
|
| 31 |
def load_model():
|
| 32 |
print(f"Loading model '{HF_MODEL_REPO_ID}'...")
|
| 33 |
model_path = hf_hub_download(repo_id=HF_MODEL_REPO_ID, filename="best_model.pth")
|
|
|
|
| 47 |
model = load_model()
|
| 48 |
|
| 49 |
# --- HELPER FUNCTIONS ---
|
| 50 |
+
def base64_to_cv2_rgba(base64_string: str):
|
|
|
|
| 51 |
header, encoded = base64_string.split(",", 1)
|
| 52 |
img_data = base64.b64decode(encoded)
|
|
|
|
|
|
|
| 53 |
pil_image = Image.open(io.BytesIO(img_data))
|
| 54 |
return cv2.cvtColor(np.array(pil_image), cv2.COLOR_RGBA2BGRA)
|
| 55 |
|
| 56 |
def cv2_to_base64(image: np.ndarray):
|
|
|
|
| 57 |
_, buffer = cv2.imencode('.png', image)
|
| 58 |
png_as_text = base64.b64encode(buffer).decode('utf-8')
|
| 59 |
return f"data:image/png;base64,{png_as_text}"
|
| 60 |
|
|
|
|
| 61 |
# --- API ENDPOINTS ---
|
| 62 |
@app.get("/")
|
| 63 |
def read_root():
|
|
|
|
| 64 |
return FileResponse('index.html')
|
| 65 |
|
| 66 |
@app.post("/predict", response_model=InferenceResponse)
|
| 67 |
async def predict(request: InferenceRequest):
|
| 68 |
+
image_cv = base64_to_cv2_rgba(request.image)
|
| 69 |
+
scribble_cv = base64_to_cv2_rgba(request.scribble_mask)
|
|
|
|
| 70 |
|
|
|
|
| 71 |
if len(scribble_cv.shape) > 2 and scribble_cv.shape[2] > 1:
|
| 72 |
scribble_cv = cv2.cvtColor(scribble_cv, cv2.COLOR_BGRA2GRAY)
|
| 73 |
|
| 74 |
h, w, _ = image_cv.shape
|
| 75 |
|
|
|
|
| 76 |
image_resized = cv2.resize(cv2.cvtColor(image_cv, cv2.COLOR_BGRA2RGB), (IMG_SIZE, IMG_SIZE), interpolation=cv2.INTER_AREA)
|
| 77 |
scribble_resized = cv2.resize(scribble_cv, (IMG_SIZE, IMG_SIZE), interpolation=cv2.INTER_NEAREST)
|
| 78 |
|
| 79 |
image_tensor = torch.from_numpy(image_resized.astype(np.float32)).permute(2, 0, 1) / 255.0
|
| 80 |
scribble_tensor = torch.from_numpy(scribble_resized.astype(np.float32)).unsqueeze(0) / 255.0
|
|
|
|
| 81 |
input_tensor = torch.cat([image_tensor, scribble_tensor], dim=0).unsqueeze(0).to(DEVICE)
|
| 82 |
|
|
|
|
| 83 |
with torch.no_grad():
|
| 84 |
output = model(input_tensor)
|
| 85 |
|
|
|
|
| 86 |
probs = torch.sigmoid(output)
|
| 87 |
+
binary_mask = (probs > CONFIDENCE_THRESHOLD).float().squeeze().cpu().numpy()
|
| 88 |
|
|
|
|
| 89 |
output_mask_resized = cv2.resize(binary_mask, (w, h), interpolation=cv2.INTER_NEAREST)
|
| 90 |
output_mask_uint8 = (output_mask_resized * 255).astype(np.uint8)
|
| 91 |
|
|
|
|
| 92 |
result_base64 = cv2_to_base64(output_mask_uint8)
|
| 93 |
|
| 94 |
return InferenceResponse(predicted_mask=result_base64)
|