Spaces:
Running
Running
File size: 15,410 Bytes
f76da22 2ac4402 f76da22 2ac4402 f76da22 ead362b f76da22 4d14e5a f76da22 ead362b f76da22 ead362b f76da22 b7dddd1 2ac4402 f76da22 ead362b 4d14e5a c1f4164 6ea6ac4 c1f4164 6ea6ac4 2ac4402 c1f4164 6ea6ac4 c1f4164 6ea6ac4 c1f4164 6ea6ac4 c1f4164 f76da22 6ea6ac4 f76da22 ead362b 2ac4402 4d14e5a 2ac4402 4d14e5a ead362b 2ac4402 ead362b 2ac4402 4d14e5a ead362b 4d14e5a 2ac4402 ead362b 6ea6ac4 2ac4402 4d14e5a ead362b 2ac4402 ead362b c1f4164 ead362b 6ea6ac4 ead362b 2ac4402 ead362b 2ac4402 ead362b c1f4164 f76da22 ead362b 6ea6ac4 f76da22 ead362b f76da22 c1f4164 ead362b 4d14e5a 2ac4402 4d14e5a f76da22 4d14e5a ead362b 4d14e5a c1f4164 6ea6ac4 c1f4164 6ea6ac4 c1f4164 6ea6ac4 c1f4164 ead362b f76da22 c1f4164 6ea6ac4 2ac4402 6ea6ac4 c1f4164 ead362b f76da22 c1f4164 4d14e5a 2ac4402 ead362b f76da22 4d14e5a ead362b f76da22 6ea6ac4 f76da22 2ac4402 4d14e5a f76da22 ead362b 4d14e5a 2ac4402 6ea6ac4 ead362b 2ac4402 ead362b c1f4164 6ea6ac4 4d14e5a c1f4164 f76da22 c1f4164 ead362b f76da22 6ea6ac4 f76da22 ead362b f76da22 6ea6ac4 c1f4164 ead362b c1f4164 f76da22 c1f4164 f76da22 ead362b 6ea6ac4 ead362b c1f4164 6ea6ac4 4d14e5a 2ac4402 f76da22 ead362b c1f4164 ead362b 6ea6ac4 ead362b 6ea6ac4 ead362b f76da22 ead362b c1f4164 ead362b 6ea6ac4 c1f4164 ead362b 6ea6ac4 ead362b 6ea6ac4 ead362b 2091b13 4d14e5a ead362b 4d14e5a ead362b 4d14e5a ead362b c1f4164 ead362b 4d14e5a ead362b 4d14e5a 6ea6ac4 c1f4164 ead362b 6ea6ac4 f76da22 ead362b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 |
# app.py
import os
os.environ["GRADIO_TEMP_DIR"] = "/home/mouxiangchen/VisionTSpp/gradio_tmp"
import gradio as gr
import torch
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import einops
import copy
from huggingface_hub import snapshot_download
from visionts import VisionTSpp, freq_to_seasonality_list
# ========================
# 1. Configuration
# ========================
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
REPO_ID = "Lefei/VisionTSpp"
LOCAL_DIR = "./hf_models/VisionTSpp"
CKPT_PATH = os.path.join(LOCAL_DIR, "visiontspp_model.ckpt")
ARCH = 'mae_base'
# Download the model from Hugging Face Hub
if not os.path.exists(CKPT_PATH):
os.makedirs(LOCAL_DIR, exist_ok=True)
print("Downloading model from Hugging Face Hub...")
snapshot_download(repo_id=REPO_ID, local_dir=LOCAL_DIR, local_dir_use_symlinks=False)
# Load the model
QUANTILES = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9]
model = VisionTSpp(
ARCH,
ckpt_path=CKPT_PATH,
# quantiles=QUANTILES,
quantile=True,
clip_input=True,
complete_no_clip=False,
color=True
).to(DEVICE)
print(f"Model loaded on {DEVICE}")
# Image normalization constants
imagenet_mean = np.array([0.485, 0.456, 0.406])
imagenet_std = np.array([0.229, 0.224, 0.225])
# ========================
# 2. Preset Datasets (Now Loaded Locally)
# ========================
# This dictionary maps user-friendly names to local file paths
# ASSUMPTION: These files exist in a 'datasets' subfolder
data_dir = "./datasets/"
# data_dir = "./"
PRESET_DATASETS = {
"ETTm1": data_dir + "ETTm1.csv",
"ETTm2": data_dir + "ETTm2.csv",
"ETTh1": data_dir + "ETTh1.csv",
"ETTh2": data_dir + "ETTh2.csv",
"Illness": data_dir + "Illness.csv",
"Weather": data_dir + "Weather.csv",
}
def load_preset_data(name):
"""Loads a preset dataset from a local path."""
path = PRESET_DATASETS[name]
if not os.path.exists(path):
raise FileNotFoundError(f"Preset dataset file not found: {path}. Make sure it's uploaded to the 'datasets' folder.")
return pd.read_csv(path)
# ========================
# 3. Visualization Functions (No changes needed)
# ========================
def show_image_tensor(image_tensor, title='', cur_nvars=1, cur_color_list=None):
if image_tensor is None:
return None
# no need for permute?
# image = image_tensor.permute(1, 2, 0).cpu()
image = image_tensor.cpu()
cur_image = torch.zeros_like(image)
height_per_var = image.shape[0] // cur_nvars
for i in range(cur_nvars):
cur_color_idx = cur_color_list[i]
var_slice = image[i*height_per_var:(i+1)*height_per_var, :, :]
unnormalized_channel = var_slice[:, :, cur_color_idx] * imagenet_std[cur_color_idx] + imagenet_mean[cur_color_idx]
cur_image[i*height_per_var:(i+1)*height_per_var, :, cur_color_idx] = unnormalized_channel * 255
cur_image = torch.clamp(cur_image, 0, 255).int().numpy()
fig, ax = plt.subplots(figsize=(6, 6))
ax.imshow(cur_image)
ax.set_title(title, fontsize=14)
ax.axis('off')
plt.tight_layout()
plt.close(fig)
return fig
def visual_ts_with_quantiles(true_data, pred_median, pred_quantiles_list, model_quantiles, context_len, pred_len):
if isinstance(true_data, torch.Tensor):
true_data = true_data.cpu().numpy()
if isinstance(pred_median, torch.Tensor):
pred_median = pred_median.cpu().numpy()
for i, q in enumerate(pred_quantiles_list):
if isinstance(q, torch.Tensor):
pred_quantiles_list[i] = q.cpu().numpy()
nvars = true_data.shape[1]
FIG_WIDTH, FIG_HEIGHT_PER_VAR = 15, 2.0
fig, axes = plt.subplots(nvars, 1, figsize=(FIG_WIDTH, nvars * FIG_HEIGHT_PER_VAR), sharex=True)
if nvars == 1:
axes = [axes]
print(f"{len(pred_quantiles_list) = }")
print(f"{len(model_quantiles) = }")
print(f"{pred_quantiles_list[0].shape = }")
sorted_quantiles = sorted(zip(model_quantiles, pred_quantiles_list + [pred_median]), key=lambda x: x[0])
quantile_preds = [item[1] for item in sorted_quantiles if item[0] != 0.5]
quantile_vals = [item[0] for item in sorted_quantiles if item[0] != 0.5]
num_bands = len(quantile_preds) // 2
quantile_colors = plt.cm.Blues(np.linspace(0.3, 0.8, num_bands))[::-1]
for i, ax in enumerate(axes):
ax.plot(true_data[:, i], label='Ground Truth', color='black', linewidth=1.5)
pred_range = np.arange(context_len, context_len + pred_len)
ax.plot(pred_range, pred_median[:, i], label='Prediction (Median)', color='red', linewidth=1.5)
for j in range(num_bands):
lower_quantile_pred, upper_quantile_pred = quantile_preds[j][:, i], quantile_preds[-(j+1)][:, i]
q_low, q_high = quantile_vals[j], quantile_vals[-(j+1)]
ax.fill_between(pred_range, lower_quantile_pred, upper_quantile_pred, color=quantile_colors[j], alpha=0.7, label=f'{int(q_low*100)}-{int(q_high*100)}% Quantile')
y_min, y_max = ax.get_ylim()
ax.vlines(x=context_len, ymin=y_min, ymax=y_max, colors='gray', linestyles='--', alpha=0.7)
ax.set_ylabel(f'Var {i+1}', rotation=0, labelpad=30, ha='right', va='center')
ax.grid(True, which='both', linestyle='--', linewidth=0.5)
ax.margins(x=0)
handles, labels = axes[0].get_legend_handles_labels()
unique_labels = dict(zip(labels, handles))
fig.legend(unique_labels.values(), unique_labels.keys(), loc='upper center', bbox_to_anchor=(0.5, 1.05), ncol=num_bands + 2)
plt.tight_layout(rect=[0, 0, 1, 0.95])
plt.close(fig)
return fig
# ========================
# 4. Prediction Logic
# ========================
class PredictionResult:
def __init__(self, ts_fig, input_img_fig, recon_img_fig, csv_path, total_samples, inferred_freq):
self.ts_fig = ts_fig
self.input_img_fig = input_img_fig
self.recon_img_fig = recon_img_fig
self.csv_path = csv_path
self.total_samples = total_samples
self.inferred_freq = inferred_freq
def predict_at_index(df, index, context_len, pred_len):
# === Data Validation & Frequency Inference ===
if 'date' not in df.columns:
raise gr.Error("β Input CSV must contain a 'date' column.")
try:
df['date'] = pd.to_datetime(df['date'])
df = df.sort_values('date').set_index('date')
# *** NEW: Infer frequency ***
inferred_freq = pd.infer_freq(df.index)
if inferred_freq is None:
# Fallback if inference fails
time_diff = df.index[1] - df.index[0]
inferred_freq = pd.tseries.frequencies.to_offset(time_diff).freqstr
gr.Warning(f"Could not reliably infer frequency. Using fallback based on first two timestamps: {inferred_freq}")
print(f"Inferred frequency: {inferred_freq}")
except Exception as e:
raise gr.Error(f"β Date processing failed: {e}. Please check the date format (e.g., YYYY-MM-DD HH:MM:SS).")
data = df.select_dtypes(include=np.number).values
nvars = data.shape[1]
total_samples = len(data) - context_len - pred_len + 1
if total_samples <= 0:
raise gr.Error(f"Data is too short. It needs at least context_len + pred_len = {context_len + pred_len} rows, but has {len(data)}.")
index = max(0, min(index, total_samples - 1))
train_len = int(len(data) * 0.7)
x_mean = data[:train_len].mean(axis=0, keepdims=True)
x_std = data[:train_len].std(axis=0, keepdims=True) + 1e-8
data_norm = (data - x_mean) / x_std
start_idx = index
x_norm = data_norm[start_idx : start_idx + context_len]
y_true_norm = data_norm[start_idx + context_len : start_idx + context_len + pred_len]
x_tensor = torch.FloatTensor(x_norm).unsqueeze(0).to(DEVICE)
# *** Use inferred frequency ***
periodicity_list = freq_to_seasonality_list(inferred_freq)
periodicity = periodicity_list[0] if periodicity_list else 1
color_list = [i % 3 for i in range(nvars)]
model.update_config(context_len=context_len, pred_len=pred_len, periodicity=periodicity)
with torch.no_grad():
y_pred, input_image, reconstructed_image, _, _ = model.forward(
x_tensor, export_image=True, color_list=color_list
)
y_pred, y_pred_quantile_list = y_pred
print(f"{x_tensor.shape = }")
print(f"{y_pred.shape = }")
print(f"{input_image.shape = }")
print(f"{reconstructed_image.shape = }")
print(f"{len(y_pred_quantile_list) = }")
print(f"{input_image = }")
print(f"{input_image[0,0,0, :, 0] = }")
print(f"{input_image[0,0,0, 50:70, 0] = }")
print(f"{input_image[0,0,0, 100:120, 0] = }")
# print(f"{input_image[0] = }")
# print(f"{reconstructed_image = }")
all_y_pred_list = copy.deepcopy(y_pred_quantile_list)
# insert in the place of 0.5 quantile, ie:len(QUANTILES)//2
all_y_pred_list.insert(len(QUANTILES)//2, y_pred)
print(f"{len(all_y_pred_list) = }")
print(f"{all_y_pred_list[0].shape = }")
all_preds = dict(zip(QUANTILES, all_y_pred_list))
print(f"{all_preds.keys() = }")
pred_median_norm = all_preds.pop(0.5)[0]
pred_quantiles_norm = [q[0] for q in list(all_preds.values())]
print(f"{pred_median_norm.shape = }")
print(f"{len(pred_quantiles_norm) = }")
y_true = y_true_norm * x_std + x_mean
pred_median = pred_median_norm.cpu().numpy() * x_std + x_mean
pred_quantiles = [q.cpu().numpy() * x_std + x_mean for q in pred_quantiles_norm]
full_true_context = data[start_idx : start_idx + context_len]
full_true_series = np.concatenate([full_true_context, y_true], axis=0)
ts_fig = visual_ts_with_quantiles(
true_data=full_true_series, pred_median=pred_median,
pred_quantiles_list=pred_quantiles, model_quantiles=list(all_preds.keys()),
context_len=context_len, pred_len=pred_len
)
input_img_fig = show_image_tensor(input_image[0, 0], f'Input Image (Sample {index})', nvars, color_list)
recon_img_fig = show_image_tensor(reconstructed_image[0, 0], 'Reconstructed Image', nvars, color_list)
os.makedirs("outputs", exist_ok=True)
csv_path = "outputs/prediction_result.csv"
time_index = df.index[start_idx + context_len : start_idx + context_len + pred_len]
result_data = {'date': time_index}
for i in range(nvars):
result_data[f'True_Var{i+1}'] = y_true[:, i]
result_data[f'Pred_Median_Var{i+1}'] = pred_median[:, i]
result_df = pd.DataFrame(result_data)
result_df.to_csv(csv_path, index=False)
return PredictionResult(ts_fig, input_img_fig, recon_img_fig, csv_path, total_samples, inferred_freq)
# ========================
# 5. Gradio Interface
# ========================
def run_forecast(data_source, upload_file, index, context_len, pred_len):
if data_source == "Upload CSV":
if upload_file is None:
raise gr.Error("Please upload a CSV file when 'Upload CSV' is selected.")
df = pd.read_csv(upload_file.name)
else:
df = load_preset_data(data_source)
try:
index, context_len, pred_len = int(index), int(context_len), int(pred_len)
result = predict_at_index(df, index, context_len, pred_len)
if index >= result.total_samples:
final_index = result.total_samples - 1
else:
final_index = index
return (
result.ts_fig,
result.input_img_fig,
result.recon_img_fig,
result.csv_path,
gr.update(maximum=result.total_samples - 1, value=final_index),
gr.update(value=result.inferred_freq) # *** Update frequency textbox ***
)
except Exception as e:
error_fig = plt.figure(figsize=(10, 5))
plt.text(0.5, 0.5, f"An error occurred:\n{str(e)}", ha='center', va='center', wrap=True, color='red', fontsize=12)
plt.axis('off')
plt.close(error_fig)
return error_fig, None, None, None, gr.update(), gr.update(value="Error")
# UI Layout
with gr.Blocks(title="VisionTS++ Advanced Forecasting Platform", theme=gr.themes.Soft()) as demo:
gr.Markdown("# π°οΈ VisionTS++: Multivariate Time Series Forecasting")
gr.Markdown(
"""
An interactive platform to explore time series forecasting using the VisionTS++ model.
- β
**Select** from local preset datasets or **upload** your own.
- β
**Frequency is auto-detected** from the 'date' column.
- β
**Visualize** predictions with multiple **quantile uncertainty bands**.
- β
**Slide** through different samples of the dataset for real-time forecasting.
- β
**Download** the prediction results as a CSV file.
"""
)
with gr.Row():
with gr.Column(scale=1, min_width=300):
gr.Markdown("### 1. Data & Model Configuration")
data_source = gr.Dropdown(
label="Select Data Source",
choices=list(PRESET_DATASETS.keys()) + ["Upload CSV"],
value="ETTh1"
)
upload_file = gr.File(label="Upload CSV File", file_types=['.csv'], visible=False)
gr.Markdown(
"""
**Upload Rules:**
1. Must be a `.csv` file.
2. Must contain a time column named `date` with a consistent frequency.
"""
)
context_len = gr.Number(label="Context Length (History)", value=336)
pred_len = gr.Number(label="Prediction Length (Future)", value=96)
# *** Changed to non-interactive textbox to display freq ***
freq_display = gr.Textbox(label="Detected Frequency", interactive=True)
run_btn = gr.Button("π Run Forecast", variant="primary")
gr.Markdown("### 2. Sample Selection")
sample_index = gr.Slider(label="Sample Index", minimum=0, maximum=100000, step=1, value=100000)
with gr.Column(scale=3):
gr.Markdown("### 3. Prediction Results")
ts_plot = gr.Plot(label="Time Series Forecast with Quantile Bands")
with gr.Row():
input_img_plot = gr.Plot(label="Input as Image")
recon_img_plot = gr.Plot(label="Reconstructed Image")
download_csv = gr.File(label="Download Prediction CSV")
# --- Event Handlers ---
def toggle_upload_visibility(choice):
return gr.update(visible=(choice == "Upload CSV"))
data_source.change(fn=toggle_upload_visibility, inputs=data_source, outputs=upload_file)
inputs = [data_source, upload_file, sample_index, context_len, pred_len]
outputs = [ts_plot, input_img_plot, recon_img_plot, download_csv, sample_index, freq_display]
run_btn.click(fn=run_forecast, inputs=inputs, outputs=outputs, api_name="run_forecast")
sample_index.release(fn=run_forecast, inputs=inputs, outputs=outputs, api_name="run_forecast_on_slide")
# Remove Examples block to avoid startup issues and rely on the button.
# If you still want examples, ensure `cache_examples=False`.
# For simplicity, we'll remove it as the 'Run' button is clear.
demo.launch(debug=True)
|