File size: 15,410 Bytes
f76da22
 
2ac4402
 
f76da22
 
 
 
 
 
2ac4402
f76da22
 
 
 
 
ead362b
f76da22
 
 
 
 
4d14e5a
f76da22
ead362b
f76da22
 
 
 
 
ead362b
 
f76da22
 
 
b7dddd1
2ac4402
f76da22
 
 
 
 
 
ead362b
4d14e5a
 
 
 
c1f4164
6ea6ac4
c1f4164
6ea6ac4
 
 
2ac4402
 
c1f4164
6ea6ac4
 
 
 
 
 
c1f4164
 
 
6ea6ac4
 
c1f4164
6ea6ac4
 
c1f4164
 
f76da22
6ea6ac4
f76da22
ead362b
2ac4402
 
 
 
 
 
 
4d14e5a
2ac4402
4d14e5a
 
ead362b
 
 
 
2ac4402
ead362b
2ac4402
4d14e5a
ead362b
4d14e5a
 
2ac4402
ead362b
6ea6ac4
2ac4402
4d14e5a
 
ead362b
2ac4402
 
 
 
 
ead362b
c1f4164
ead362b
 
 
6ea6ac4
ead362b
2ac4402
 
 
 
 
 
ead362b
 
 
 
2ac4402
ead362b
 
c1f4164
f76da22
ead362b
 
 
 
 
6ea6ac4
 
 
f76da22
 
ead362b
 
 
 
f76da22
c1f4164
ead362b
 
 
4d14e5a
2ac4402
4d14e5a
f76da22
 
4d14e5a
ead362b
4d14e5a
c1f4164
6ea6ac4
c1f4164
 
 
 
 
6ea6ac4
c1f4164
6ea6ac4
 
c1f4164
ead362b
f76da22
c1f4164
 
6ea6ac4
 
 
 
 
 
 
 
 
2ac4402
6ea6ac4
 
c1f4164
ead362b
f76da22
 
c1f4164
4d14e5a
2ac4402
ead362b
 
f76da22
 
 
 
 
 
4d14e5a
ead362b
 
 
f76da22
6ea6ac4
 
f76da22
2ac4402
4d14e5a
 
f76da22
 
ead362b
4d14e5a
 
2ac4402
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6ea6ac4
 
ead362b
2ac4402
 
 
ead362b
 
 
 
 
 
 
c1f4164
6ea6ac4
 
 
4d14e5a
c1f4164
 
f76da22
c1f4164
 
ead362b
 
 
 
 
 
 
f76da22
6ea6ac4
f76da22
 
 
ead362b
f76da22
6ea6ac4
c1f4164
 
ead362b
c1f4164
f76da22
c1f4164
f76da22
 
ead362b
6ea6ac4
ead362b
 
 
 
 
 
c1f4164
 
 
 
 
6ea6ac4
 
4d14e5a
2ac4402
f76da22
ead362b
 
c1f4164
ead362b
6ea6ac4
ead362b
 
 
 
 
 
 
6ea6ac4
 
ead362b
 
 
 
 
 
f76da22
ead362b
 
c1f4164
ead362b
6ea6ac4
 
c1f4164
ead362b
 
 
 
 
6ea6ac4
ead362b
 
 
 
 
6ea6ac4
 
ead362b
 
 
 
2091b13
4d14e5a
 
ead362b
 
4d14e5a
ead362b
4d14e5a
ead362b
c1f4164
ead362b
 
 
4d14e5a
ead362b
4d14e5a
6ea6ac4
 
c1f4164
ead362b
 
 
6ea6ac4
 
 
f76da22
ead362b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
# app.py
import os
os.environ["GRADIO_TEMP_DIR"] = "/home/mouxiangchen/VisionTSpp/gradio_tmp"

import gradio as gr
import torch
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import einops
import copy

from huggingface_hub import snapshot_download
from visionts import VisionTSpp, freq_to_seasonality_list

# ========================
# 1. Configuration
# ========================
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
REPO_ID = "Lefei/VisionTSpp"
LOCAL_DIR = "./hf_models/VisionTSpp"
CKPT_PATH = os.path.join(LOCAL_DIR, "visiontspp_model.ckpt")
ARCH = 'mae_base'

# Download the model from Hugging Face Hub
if not os.path.exists(CKPT_PATH):
    os.makedirs(LOCAL_DIR, exist_ok=True)
    print("Downloading model from Hugging Face Hub...")
    snapshot_download(repo_id=REPO_ID, local_dir=LOCAL_DIR, local_dir_use_symlinks=False)

# Load the model
QUANTILES = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9]
model = VisionTSpp(
    ARCH,
    ckpt_path=CKPT_PATH,
    # quantiles=QUANTILES,
    quantile=True,
    clip_input=True,
    complete_no_clip=False,
    color=True
).to(DEVICE)
print(f"Model loaded on {DEVICE}")

# Image normalization constants
imagenet_mean = np.array([0.485, 0.456, 0.406])
imagenet_std = np.array([0.229, 0.224, 0.225])


# ========================
# 2. Preset Datasets (Now Loaded Locally)
# ========================
# This dictionary maps user-friendly names to local file paths
# ASSUMPTION: These files exist in a 'datasets' subfolder

data_dir = "./datasets/"
# data_dir = "./"
PRESET_DATASETS = {
    "ETTm1": data_dir + "ETTm1.csv",
    "ETTm2": data_dir + "ETTm2.csv",
    "ETTh1": data_dir + "ETTh1.csv",
    "ETTh2": data_dir + "ETTh2.csv",
    "Illness": data_dir + "Illness.csv",
    "Weather": data_dir + "Weather.csv",
}

def load_preset_data(name):
    """Loads a preset dataset from a local path."""
    path = PRESET_DATASETS[name]
    if not os.path.exists(path):
        raise FileNotFoundError(f"Preset dataset file not found: {path}. Make sure it's uploaded to the 'datasets' folder.")
    return pd.read_csv(path)


# ========================
# 3. Visualization Functions (No changes needed)
# ========================
def show_image_tensor(image_tensor, title='', cur_nvars=1, cur_color_list=None):
    if image_tensor is None: 
        return None
    
    # no need for permute?
    # image = image_tensor.permute(1, 2, 0).cpu()
    image = image_tensor.cpu()
    
    cur_image = torch.zeros_like(image)

    height_per_var = image.shape[0] // cur_nvars
    for i in range(cur_nvars):
        cur_color_idx = cur_color_list[i]
        var_slice = image[i*height_per_var:(i+1)*height_per_var, :, :]
        unnormalized_channel = var_slice[:, :, cur_color_idx] * imagenet_std[cur_color_idx] + imagenet_mean[cur_color_idx]
        cur_image[i*height_per_var:(i+1)*height_per_var, :, cur_color_idx] = unnormalized_channel * 255
    
    cur_image = torch.clamp(cur_image, 0, 255).int().numpy()

    fig, ax = plt.subplots(figsize=(6, 6))
    ax.imshow(cur_image)
    ax.set_title(title, fontsize=14)
    ax.axis('off')
    
    plt.tight_layout()
    plt.close(fig)
    
    return fig

def visual_ts_with_quantiles(true_data, pred_median, pred_quantiles_list, model_quantiles, context_len, pred_len):
    if isinstance(true_data, torch.Tensor): 
        true_data = true_data.cpu().numpy()
    if isinstance(pred_median, torch.Tensor): 
        pred_median = pred_median.cpu().numpy()
    
    for i, q in enumerate(pred_quantiles_list):
        if isinstance(q, torch.Tensor):
            pred_quantiles_list[i] = q.cpu().numpy()

    nvars = true_data.shape[1]
    FIG_WIDTH, FIG_HEIGHT_PER_VAR = 15, 2.0
    fig, axes = plt.subplots(nvars, 1, figsize=(FIG_WIDTH, nvars * FIG_HEIGHT_PER_VAR), sharex=True)
    if nvars == 1: 
        axes = [axes]

    print(f"{len(pred_quantiles_list) = }")
    print(f"{len(model_quantiles) = }")
    print(f"{pred_quantiles_list[0].shape = }")

    sorted_quantiles = sorted(zip(model_quantiles, pred_quantiles_list + [pred_median]), key=lambda x: x[0])
    quantile_preds = [item[1] for item in sorted_quantiles if item[0] != 0.5]
    quantile_vals = [item[0] for item in sorted_quantiles if item[0] != 0.5]
    
    num_bands = len(quantile_preds) // 2
    quantile_colors = plt.cm.Blues(np.linspace(0.3, 0.8, num_bands))[::-1]

    for i, ax in enumerate(axes):
        ax.plot(true_data[:, i], label='Ground Truth', color='black', linewidth=1.5)
        pred_range = np.arange(context_len, context_len + pred_len)
        ax.plot(pred_range, pred_median[:, i], label='Prediction (Median)', color='red', linewidth=1.5)

        for j in range(num_bands):
            lower_quantile_pred, upper_quantile_pred = quantile_preds[j][:, i], quantile_preds[-(j+1)][:, i]
            q_low, q_high = quantile_vals[j], quantile_vals[-(j+1)]
            ax.fill_between(pred_range, lower_quantile_pred, upper_quantile_pred, color=quantile_colors[j], alpha=0.7, label=f'{int(q_low*100)}-{int(q_high*100)}% Quantile')

        y_min, y_max = ax.get_ylim()
        ax.vlines(x=context_len, ymin=y_min, ymax=y_max, colors='gray', linestyles='--', alpha=0.7)
        ax.set_ylabel(f'Var {i+1}', rotation=0, labelpad=30, ha='right', va='center')
        ax.grid(True, which='both', linestyle='--', linewidth=0.5)
        ax.margins(x=0)

    handles, labels = axes[0].get_legend_handles_labels()
    unique_labels = dict(zip(labels, handles))
    fig.legend(unique_labels.values(), unique_labels.keys(), loc='upper center', bbox_to_anchor=(0.5, 1.05), ncol=num_bands + 2)
    plt.tight_layout(rect=[0, 0, 1, 0.95])
    plt.close(fig)
    
    return fig


# ========================
# 4. Prediction Logic
# ========================
class PredictionResult:
    def __init__(self, ts_fig, input_img_fig, recon_img_fig, csv_path, total_samples, inferred_freq):
        self.ts_fig = ts_fig
        self.input_img_fig = input_img_fig
        self.recon_img_fig = recon_img_fig
        self.csv_path = csv_path
        self.total_samples = total_samples
        self.inferred_freq = inferred_freq

def predict_at_index(df, index, context_len, pred_len):
    # === Data Validation & Frequency Inference ===
    if 'date' not in df.columns:
        raise gr.Error("❌ Input CSV must contain a 'date' column.")

    try:
        df['date'] = pd.to_datetime(df['date'])
        df = df.sort_values('date').set_index('date')
        # *** NEW: Infer frequency ***
        inferred_freq = pd.infer_freq(df.index)
        if inferred_freq is None:
            # Fallback if inference fails
            time_diff = df.index[1] - df.index[0]
            inferred_freq = pd.tseries.frequencies.to_offset(time_diff).freqstr
            gr.Warning(f"Could not reliably infer frequency. Using fallback based on first two timestamps: {inferred_freq}")
        print(f"Inferred frequency: {inferred_freq}")
    
    except Exception as e:
        raise gr.Error(f"❌ Date processing failed: {e}. Please check the date format (e.g., YYYY-MM-DD HH:MM:SS).")

    data = df.select_dtypes(include=np.number).values
    nvars = data.shape[1]

    total_samples = len(data) - context_len - pred_len + 1
    if total_samples <= 0:
        raise gr.Error(f"Data is too short. It needs at least context_len + pred_len = {context_len + pred_len} rows, but has {len(data)}.")
    
    index = max(0, min(index, total_samples - 1))

    train_len = int(len(data) * 0.7)
    x_mean = data[:train_len].mean(axis=0, keepdims=True)
    x_std = data[:train_len].std(axis=0, keepdims=True) + 1e-8
    data_norm = (data - x_mean) / x_std

    start_idx = index
    x_norm = data_norm[start_idx : start_idx + context_len]
    y_true_norm = data_norm[start_idx + context_len : start_idx + context_len + pred_len]
    x_tensor = torch.FloatTensor(x_norm).unsqueeze(0).to(DEVICE)

    # *** Use inferred frequency ***
    periodicity_list = freq_to_seasonality_list(inferred_freq)
    periodicity = periodicity_list[0] if periodicity_list else 1
    
    color_list = [i % 3 for i in range(nvars)]
    model.update_config(context_len=context_len, pred_len=pred_len, periodicity=periodicity)

    with torch.no_grad():
        y_pred, input_image, reconstructed_image, _, _ = model.forward(
            x_tensor, export_image=True, color_list=color_list
        )
        y_pred, y_pred_quantile_list = y_pred

        print(f"{x_tensor.shape = }")
        print(f"{y_pred.shape = }")
        print(f"{input_image.shape = }")
        print(f"{reconstructed_image.shape = }")
        print(f"{len(y_pred_quantile_list) = }")

        print(f"{input_image = }")
        print(f"{input_image[0,0,0, :, 0] = }")
        print(f"{input_image[0,0,0, 50:70, 0] = }")
        print(f"{input_image[0,0,0, 100:120, 0] = }")
        # print(f"{input_image[0] = }")
        # print(f"{reconstructed_image = }")

        all_y_pred_list = copy.deepcopy(y_pred_quantile_list)
        
        # insert in the place of 0.5 quantile, ie:len(QUANTILES)//2
        all_y_pred_list.insert(len(QUANTILES)//2, y_pred)

        print(f"{len(all_y_pred_list) = }")
        print(f"{all_y_pred_list[0].shape = }")

        all_preds = dict(zip(QUANTILES, all_y_pred_list))

        print(f"{all_preds.keys() = }")

        pred_median_norm = all_preds.pop(0.5)[0]
        pred_quantiles_norm = [q[0] for q in list(all_preds.values())]

        print(f"{pred_median_norm.shape = }")
        print(f"{len(pred_quantiles_norm) = }")

    y_true = y_true_norm * x_std + x_mean
    pred_median = pred_median_norm.cpu().numpy() * x_std + x_mean
    pred_quantiles = [q.cpu().numpy() * x_std + x_mean for q in pred_quantiles_norm]

    full_true_context = data[start_idx : start_idx + context_len]
    full_true_series = np.concatenate([full_true_context, y_true], axis=0)
    
    ts_fig = visual_ts_with_quantiles(
        true_data=full_true_series, pred_median=pred_median,
        pred_quantiles_list=pred_quantiles, model_quantiles=list(all_preds.keys()),
        context_len=context_len, pred_len=pred_len
    )
    input_img_fig = show_image_tensor(input_image[0, 0], f'Input Image (Sample {index})', nvars, color_list)
    recon_img_fig = show_image_tensor(reconstructed_image[0, 0], 'Reconstructed Image', nvars, color_list)

    os.makedirs("outputs", exist_ok=True)
    csv_path = "outputs/prediction_result.csv"
    time_index = df.index[start_idx + context_len : start_idx + context_len + pred_len]
    result_data = {'date': time_index}
    for i in range(nvars):
        result_data[f'True_Var{i+1}'] = y_true[:, i]
        result_data[f'Pred_Median_Var{i+1}'] = pred_median[:, i]
    result_df = pd.DataFrame(result_data)
    result_df.to_csv(csv_path, index=False)

    return PredictionResult(ts_fig, input_img_fig, recon_img_fig, csv_path, total_samples, inferred_freq)


# ========================
# 5. Gradio Interface
# ========================
def run_forecast(data_source, upload_file, index, context_len, pred_len):
    if data_source == "Upload CSV":
        if upload_file is None:
            raise gr.Error("Please upload a CSV file when 'Upload CSV' is selected.")
        df = pd.read_csv(upload_file.name)
    else:
        df = load_preset_data(data_source)

    try:
        index, context_len, pred_len = int(index), int(context_len), int(pred_len)
        result = predict_at_index(df, index, context_len, pred_len)
        
        if index >= result.total_samples:
            final_index = result.total_samples - 1
        else:
            final_index = index
            
        return (
            result.ts_fig,
            result.input_img_fig,
            result.recon_img_fig,
            result.csv_path,
            gr.update(maximum=result.total_samples - 1, value=final_index),
            gr.update(value=result.inferred_freq) # *** Update frequency textbox ***
        )
    
    except Exception as e:
        error_fig = plt.figure(figsize=(10, 5))
        plt.text(0.5, 0.5, f"An error occurred:\n{str(e)}", ha='center', va='center', wrap=True, color='red', fontsize=12)
        plt.axis('off')
        plt.close(error_fig)
        return error_fig, None, None, None, gr.update(), gr.update(value="Error")

# UI Layout
with gr.Blocks(title="VisionTS++ Advanced Forecasting Platform", theme=gr.themes.Soft()) as demo:
    gr.Markdown("# πŸ•°οΈ VisionTS++: Multivariate Time Series Forecasting")
    gr.Markdown(
        """
        An interactive platform to explore time series forecasting using the VisionTS++ model.
        - βœ… **Select** from local preset datasets or **upload** your own.
        - βœ… **Frequency is auto-detected** from the 'date' column.
        - βœ… **Visualize** predictions with multiple **quantile uncertainty bands**.
        - βœ… **Slide** through different samples of the dataset for real-time forecasting.
        - βœ… **Download** the prediction results as a CSV file.
        """
    )
    
    with gr.Row():
        with gr.Column(scale=1, min_width=300):
            gr.Markdown("### 1. Data & Model Configuration")
            data_source = gr.Dropdown(
                label="Select Data Source",
                choices=list(PRESET_DATASETS.keys()) + ["Upload CSV"],
                value="ETTh1"
            )
            upload_file = gr.File(label="Upload CSV File", file_types=['.csv'], visible=False)
            gr.Markdown(
                """
                **Upload Rules:**
                1. Must be a `.csv` file.
                2. Must contain a time column named `date` with a consistent frequency.
                """
            )
            
            context_len = gr.Number(label="Context Length (History)", value=336)
            pred_len = gr.Number(label="Prediction Length (Future)", value=96)
            # *** Changed to non-interactive textbox to display freq ***
            freq_display = gr.Textbox(label="Detected Frequency", interactive=True)

            run_btn = gr.Button("πŸš€ Run Forecast", variant="primary")
            
            gr.Markdown("### 2. Sample Selection")
            sample_index = gr.Slider(label="Sample Index", minimum=0, maximum=100000, step=1, value=100000)

        with gr.Column(scale=3):
            gr.Markdown("### 3. Prediction Results")
            ts_plot = gr.Plot(label="Time Series Forecast with Quantile Bands")
            with gr.Row():
                input_img_plot = gr.Plot(label="Input as Image")
                recon_img_plot = gr.Plot(label="Reconstructed Image")
            download_csv = gr.File(label="Download Prediction CSV")

    # --- Event Handlers ---
    def toggle_upload_visibility(choice):
        return gr.update(visible=(choice == "Upload CSV"))

    data_source.change(fn=toggle_upload_visibility, inputs=data_source, outputs=upload_file)

    inputs = [data_source, upload_file, sample_index, context_len, pred_len]
    outputs = [ts_plot, input_img_plot, recon_img_plot, download_csv, sample_index, freq_display]

    run_btn.click(fn=run_forecast, inputs=inputs, outputs=outputs, api_name="run_forecast")
    sample_index.release(fn=run_forecast, inputs=inputs, outputs=outputs, api_name="run_forecast_on_slide")
    
    # Remove Examples block to avoid startup issues and rely on the button.
    # If you still want examples, ensure `cache_examples=False`.
    # For simplicity, we'll remove it as the 'Run' button is clear.

demo.launch(debug=True)