Spaces:
Running
Running
update app.py
Browse files
app.py
CHANGED
|
@@ -1,11 +1,14 @@
|
|
| 1 |
# app.py
|
| 2 |
import os
|
|
|
|
|
|
|
| 3 |
import gradio as gr
|
| 4 |
import torch
|
| 5 |
import numpy as np
|
| 6 |
import pandas as pd
|
| 7 |
import matplotlib.pyplot as plt
|
| 8 |
import einops
|
|
|
|
| 9 |
|
| 10 |
from huggingface_hub import snapshot_download
|
| 11 |
from visionts import VisionTSpp, freq_to_seasonality_list
|
|
@@ -31,6 +34,7 @@ model = VisionTSpp(
|
|
| 31 |
ARCH,
|
| 32 |
ckpt_path=CKPT_PATH,
|
| 33 |
# quantiles=QUANTILES,
|
|
|
|
| 34 |
clip_input=True,
|
| 35 |
complete_no_clip=False,
|
| 36 |
color=True
|
|
@@ -48,8 +52,8 @@ imagenet_std = np.array([0.229, 0.224, 0.225])
|
|
| 48 |
# This dictionary maps user-friendly names to local file paths
|
| 49 |
# ASSUMPTION: These files exist in a 'datasets' subfolder
|
| 50 |
|
| 51 |
-
|
| 52 |
-
data_dir = "./"
|
| 53 |
PRESET_DATASETS = {
|
| 54 |
"ETTm1": data_dir + "ETTm1.csv",
|
| 55 |
"ETTm2": data_dir + "ETTm2.csv",
|
|
@@ -71,27 +75,40 @@ def load_preset_data(name):
|
|
| 71 |
# 3. Visualization Functions (No changes needed)
|
| 72 |
# ========================
|
| 73 |
def show_image_tensor(image_tensor, title='', cur_nvars=1, cur_color_list=None):
|
| 74 |
-
if image_tensor is None:
|
| 75 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 76 |
cur_image = torch.zeros_like(image)
|
|
|
|
| 77 |
height_per_var = image.shape[0] // cur_nvars
|
| 78 |
for i in range(cur_nvars):
|
| 79 |
cur_color_idx = cur_color_list[i]
|
| 80 |
var_slice = image[i*height_per_var:(i+1)*height_per_var, :, :]
|
| 81 |
unnormalized_channel = var_slice[:, :, cur_color_idx] * imagenet_std[cur_color_idx] + imagenet_mean[cur_color_idx]
|
| 82 |
cur_image[i*height_per_var:(i+1)*height_per_var, :, cur_color_idx] = unnormalized_channel * 255
|
|
|
|
| 83 |
cur_image = torch.clamp(cur_image, 0, 255).int().numpy()
|
|
|
|
| 84 |
fig, ax = plt.subplots(figsize=(6, 6))
|
| 85 |
ax.imshow(cur_image)
|
| 86 |
ax.set_title(title, fontsize=14)
|
| 87 |
ax.axis('off')
|
|
|
|
| 88 |
plt.tight_layout()
|
| 89 |
plt.close(fig)
|
|
|
|
| 90 |
return fig
|
| 91 |
|
| 92 |
def visual_ts_with_quantiles(true_data, pred_median, pred_quantiles_list, model_quantiles, context_len, pred_len):
|
| 93 |
-
if isinstance(true_data, torch.Tensor):
|
| 94 |
-
|
|
|
|
|
|
|
|
|
|
| 95 |
for i, q in enumerate(pred_quantiles_list):
|
| 96 |
if isinstance(q, torch.Tensor):
|
| 97 |
pred_quantiles_list[i] = q.cpu().numpy()
|
|
@@ -99,11 +116,17 @@ def visual_ts_with_quantiles(true_data, pred_median, pred_quantiles_list, model_
|
|
| 99 |
nvars = true_data.shape[1]
|
| 100 |
FIG_WIDTH, FIG_HEIGHT_PER_VAR = 15, 2.0
|
| 101 |
fig, axes = plt.subplots(nvars, 1, figsize=(FIG_WIDTH, nvars * FIG_HEIGHT_PER_VAR), sharex=True)
|
| 102 |
-
if nvars == 1:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 103 |
|
| 104 |
sorted_quantiles = sorted(zip(model_quantiles, pred_quantiles_list + [pred_median]), key=lambda x: x[0])
|
| 105 |
quantile_preds = [item[1] for item in sorted_quantiles if item[0] != 0.5]
|
| 106 |
quantile_vals = [item[0] for item in sorted_quantiles if item[0] != 0.5]
|
|
|
|
| 107 |
num_bands = len(quantile_preds) // 2
|
| 108 |
quantile_colors = plt.cm.Blues(np.linspace(0.3, 0.8, num_bands))[::-1]
|
| 109 |
|
|
@@ -128,6 +151,7 @@ def visual_ts_with_quantiles(true_data, pred_median, pred_quantiles_list, model_
|
|
| 128 |
fig.legend(unique_labels.values(), unique_labels.keys(), loc='upper center', bbox_to_anchor=(0.5, 1.05), ncol=num_bands + 2)
|
| 129 |
plt.tight_layout(rect=[0, 0, 1, 0.95])
|
| 130 |
plt.close(fig)
|
|
|
|
| 131 |
return fig
|
| 132 |
|
| 133 |
|
|
@@ -159,6 +183,7 @@ def predict_at_index(df, index, context_len, pred_len):
|
|
| 159 |
inferred_freq = pd.tseries.frequencies.to_offset(time_diff).freqstr
|
| 160 |
gr.Warning(f"Could not reliably infer frequency. Using fallback based on first two timestamps: {inferred_freq}")
|
| 161 |
print(f"Inferred frequency: {inferred_freq}")
|
|
|
|
| 162 |
except Exception as e:
|
| 163 |
raise gr.Error(f"❌ Date processing failed: {e}. Please check the date format (e.g., YYYY-MM-DD HH:MM:SS).")
|
| 164 |
|
|
@@ -167,7 +192,7 @@ def predict_at_index(df, index, context_len, pred_len):
|
|
| 167 |
|
| 168 |
total_samples = len(data) - context_len - pred_len + 1
|
| 169 |
if total_samples <= 0:
|
| 170 |
-
raise gr.Error(f"Data is too short. It needs at least {context_len + pred_len} rows, but has {len(data)}.")
|
| 171 |
|
| 172 |
index = max(0, min(index, total_samples - 1))
|
| 173 |
|
|
@@ -184,6 +209,7 @@ def predict_at_index(df, index, context_len, pred_len):
|
|
| 184 |
# *** Use inferred frequency ***
|
| 185 |
periodicity_list = freq_to_seasonality_list(inferred_freq)
|
| 186 |
periodicity = periodicity_list[0] if periodicity_list else 1
|
|
|
|
| 187 |
color_list = [i % 3 for i in range(nvars)]
|
| 188 |
model.update_config(context_len=context_len, pred_len=pred_len, periodicity=periodicity)
|
| 189 |
|
|
@@ -191,10 +217,39 @@ def predict_at_index(df, index, context_len, pred_len):
|
|
| 191 |
y_pred, input_image, reconstructed_image, _, _ = model.forward(
|
| 192 |
x_tensor, export_image=True, color_list=color_list
|
| 193 |
)
|
| 194 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 195 |
pred_median_norm = all_preds.pop(0.5)[0]
|
| 196 |
pred_quantiles_norm = [q[0] for q in list(all_preds.values())]
|
| 197 |
|
|
|
|
|
|
|
|
|
|
| 198 |
y_true = y_true_norm * x_std + x_mean
|
| 199 |
pred_median = pred_median_norm.cpu().numpy() * x_std + x_mean
|
| 200 |
pred_quantiles = [q.cpu().numpy() * x_std + x_mean for q in pred_quantiles_norm]
|
|
@@ -251,6 +306,7 @@ def run_forecast(data_source, upload_file, index, context_len, pred_len):
|
|
| 251 |
gr.update(maximum=result.total_samples - 1, value=final_index),
|
| 252 |
gr.update(value=result.inferred_freq) # *** Update frequency textbox ***
|
| 253 |
)
|
|
|
|
| 254 |
except Exception as e:
|
| 255 |
error_fig = plt.figure(figsize=(10, 5))
|
| 256 |
plt.text(0.5, 0.5, f"An error occurred:\n{str(e)}", ha='center', va='center', wrap=True, color='red', fontsize=12)
|
|
|
|
| 1 |
# app.py
|
| 2 |
import os
|
| 3 |
+
os.environ["GRADIO_TEMP_DIR"] = "/home/mouxiangchen/VisionTSpp/gradio_tmp"
|
| 4 |
+
|
| 5 |
import gradio as gr
|
| 6 |
import torch
|
| 7 |
import numpy as np
|
| 8 |
import pandas as pd
|
| 9 |
import matplotlib.pyplot as plt
|
| 10 |
import einops
|
| 11 |
+
import copy
|
| 12 |
|
| 13 |
from huggingface_hub import snapshot_download
|
| 14 |
from visionts import VisionTSpp, freq_to_seasonality_list
|
|
|
|
| 34 |
ARCH,
|
| 35 |
ckpt_path=CKPT_PATH,
|
| 36 |
# quantiles=QUANTILES,
|
| 37 |
+
quantile=True,
|
| 38 |
clip_input=True,
|
| 39 |
complete_no_clip=False,
|
| 40 |
color=True
|
|
|
|
| 52 |
# This dictionary maps user-friendly names to local file paths
|
| 53 |
# ASSUMPTION: These files exist in a 'datasets' subfolder
|
| 54 |
|
| 55 |
+
data_dir = "./datasets/"
|
| 56 |
+
# data_dir = "./"
|
| 57 |
PRESET_DATASETS = {
|
| 58 |
"ETTm1": data_dir + "ETTm1.csv",
|
| 59 |
"ETTm2": data_dir + "ETTm2.csv",
|
|
|
|
| 75 |
# 3. Visualization Functions (No changes needed)
|
| 76 |
# ========================
|
| 77 |
def show_image_tensor(image_tensor, title='', cur_nvars=1, cur_color_list=None):
|
| 78 |
+
if image_tensor is None:
|
| 79 |
+
return None
|
| 80 |
+
|
| 81 |
+
# no need for permute?
|
| 82 |
+
# image = image_tensor.permute(1, 2, 0).cpu()
|
| 83 |
+
image = image_tensor.cpu()
|
| 84 |
+
|
| 85 |
cur_image = torch.zeros_like(image)
|
| 86 |
+
|
| 87 |
height_per_var = image.shape[0] // cur_nvars
|
| 88 |
for i in range(cur_nvars):
|
| 89 |
cur_color_idx = cur_color_list[i]
|
| 90 |
var_slice = image[i*height_per_var:(i+1)*height_per_var, :, :]
|
| 91 |
unnormalized_channel = var_slice[:, :, cur_color_idx] * imagenet_std[cur_color_idx] + imagenet_mean[cur_color_idx]
|
| 92 |
cur_image[i*height_per_var:(i+1)*height_per_var, :, cur_color_idx] = unnormalized_channel * 255
|
| 93 |
+
|
| 94 |
cur_image = torch.clamp(cur_image, 0, 255).int().numpy()
|
| 95 |
+
|
| 96 |
fig, ax = plt.subplots(figsize=(6, 6))
|
| 97 |
ax.imshow(cur_image)
|
| 98 |
ax.set_title(title, fontsize=14)
|
| 99 |
ax.axis('off')
|
| 100 |
+
|
| 101 |
plt.tight_layout()
|
| 102 |
plt.close(fig)
|
| 103 |
+
|
| 104 |
return fig
|
| 105 |
|
| 106 |
def visual_ts_with_quantiles(true_data, pred_median, pred_quantiles_list, model_quantiles, context_len, pred_len):
|
| 107 |
+
if isinstance(true_data, torch.Tensor):
|
| 108 |
+
true_data = true_data.cpu().numpy()
|
| 109 |
+
if isinstance(pred_median, torch.Tensor):
|
| 110 |
+
pred_median = pred_median.cpu().numpy()
|
| 111 |
+
|
| 112 |
for i, q in enumerate(pred_quantiles_list):
|
| 113 |
if isinstance(q, torch.Tensor):
|
| 114 |
pred_quantiles_list[i] = q.cpu().numpy()
|
|
|
|
| 116 |
nvars = true_data.shape[1]
|
| 117 |
FIG_WIDTH, FIG_HEIGHT_PER_VAR = 15, 2.0
|
| 118 |
fig, axes = plt.subplots(nvars, 1, figsize=(FIG_WIDTH, nvars * FIG_HEIGHT_PER_VAR), sharex=True)
|
| 119 |
+
if nvars == 1:
|
| 120 |
+
axes = [axes]
|
| 121 |
+
|
| 122 |
+
print(f"{len(pred_quantiles_list) = }")
|
| 123 |
+
print(f"{len(model_quantiles) = }")
|
| 124 |
+
print(f"{pred_quantiles_list[0].shape = }")
|
| 125 |
|
| 126 |
sorted_quantiles = sorted(zip(model_quantiles, pred_quantiles_list + [pred_median]), key=lambda x: x[0])
|
| 127 |
quantile_preds = [item[1] for item in sorted_quantiles if item[0] != 0.5]
|
| 128 |
quantile_vals = [item[0] for item in sorted_quantiles if item[0] != 0.5]
|
| 129 |
+
|
| 130 |
num_bands = len(quantile_preds) // 2
|
| 131 |
quantile_colors = plt.cm.Blues(np.linspace(0.3, 0.8, num_bands))[::-1]
|
| 132 |
|
|
|
|
| 151 |
fig.legend(unique_labels.values(), unique_labels.keys(), loc='upper center', bbox_to_anchor=(0.5, 1.05), ncol=num_bands + 2)
|
| 152 |
plt.tight_layout(rect=[0, 0, 1, 0.95])
|
| 153 |
plt.close(fig)
|
| 154 |
+
|
| 155 |
return fig
|
| 156 |
|
| 157 |
|
|
|
|
| 183 |
inferred_freq = pd.tseries.frequencies.to_offset(time_diff).freqstr
|
| 184 |
gr.Warning(f"Could not reliably infer frequency. Using fallback based on first two timestamps: {inferred_freq}")
|
| 185 |
print(f"Inferred frequency: {inferred_freq}")
|
| 186 |
+
|
| 187 |
except Exception as e:
|
| 188 |
raise gr.Error(f"❌ Date processing failed: {e}. Please check the date format (e.g., YYYY-MM-DD HH:MM:SS).")
|
| 189 |
|
|
|
|
| 192 |
|
| 193 |
total_samples = len(data) - context_len - pred_len + 1
|
| 194 |
if total_samples <= 0:
|
| 195 |
+
raise gr.Error(f"Data is too short. It needs at least context_len + pred_len = {context_len + pred_len} rows, but has {len(data)}.")
|
| 196 |
|
| 197 |
index = max(0, min(index, total_samples - 1))
|
| 198 |
|
|
|
|
| 209 |
# *** Use inferred frequency ***
|
| 210 |
periodicity_list = freq_to_seasonality_list(inferred_freq)
|
| 211 |
periodicity = periodicity_list[0] if periodicity_list else 1
|
| 212 |
+
|
| 213 |
color_list = [i % 3 for i in range(nvars)]
|
| 214 |
model.update_config(context_len=context_len, pred_len=pred_len, periodicity=periodicity)
|
| 215 |
|
|
|
|
| 217 |
y_pred, input_image, reconstructed_image, _, _ = model.forward(
|
| 218 |
x_tensor, export_image=True, color_list=color_list
|
| 219 |
)
|
| 220 |
+
y_pred, y_pred_quantile_list = y_pred
|
| 221 |
+
|
| 222 |
+
print(f"{x_tensor.shape = }")
|
| 223 |
+
print(f"{y_pred.shape = }")
|
| 224 |
+
print(f"{input_image.shape = }")
|
| 225 |
+
print(f"{reconstructed_image.shape = }")
|
| 226 |
+
print(f"{len(y_pred_quantile_list) = }")
|
| 227 |
+
|
| 228 |
+
print(f"{input_image = }")
|
| 229 |
+
print(f"{input_image[0,0,0, :, 0] = }")
|
| 230 |
+
print(f"{input_image[0,0,0, 50:70, 0] = }")
|
| 231 |
+
print(f"{input_image[0,0,0, 100:120, 0] = }")
|
| 232 |
+
# print(f"{input_image[0] = }")
|
| 233 |
+
# print(f"{reconstructed_image = }")
|
| 234 |
+
|
| 235 |
+
all_y_pred_list = copy.deepcopy(y_pred_quantile_list)
|
| 236 |
+
|
| 237 |
+
# insert in the place of 0.5 quantile, ie:len(QUANTILES)//2
|
| 238 |
+
all_y_pred_list.insert(len(QUANTILES)//2, y_pred)
|
| 239 |
+
|
| 240 |
+
print(f"{len(all_y_pred_list) = }")
|
| 241 |
+
print(f"{all_y_pred_list[0].shape = }")
|
| 242 |
+
|
| 243 |
+
all_preds = dict(zip(QUANTILES, all_y_pred_list))
|
| 244 |
+
|
| 245 |
+
print(f"{all_preds.keys() = }")
|
| 246 |
+
|
| 247 |
pred_median_norm = all_preds.pop(0.5)[0]
|
| 248 |
pred_quantiles_norm = [q[0] for q in list(all_preds.values())]
|
| 249 |
|
| 250 |
+
print(f"{pred_median_norm.shape = }")
|
| 251 |
+
print(f"{len(pred_quantiles_norm) = }")
|
| 252 |
+
|
| 253 |
y_true = y_true_norm * x_std + x_mean
|
| 254 |
pred_median = pred_median_norm.cpu().numpy() * x_std + x_mean
|
| 255 |
pred_quantiles = [q.cpu().numpy() * x_std + x_mean for q in pred_quantiles_norm]
|
|
|
|
| 306 |
gr.update(maximum=result.total_samples - 1, value=final_index),
|
| 307 |
gr.update(value=result.inferred_freq) # *** Update frequency textbox ***
|
| 308 |
)
|
| 309 |
+
|
| 310 |
except Exception as e:
|
| 311 |
error_fig = plt.figure(figsize=(10, 5))
|
| 312 |
plt.text(0.5, 0.5, f"An error occurred:\n{str(e)}", ha='center', va='center', wrap=True, color='red', fontsize=12)
|