Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,243 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# app.py
|
| 2 |
+
import os
|
| 3 |
+
import gradio as gr
|
| 4 |
+
import torch
|
| 5 |
+
import numpy as np
|
| 6 |
+
import pandas as pd
|
| 7 |
+
import matplotlib.pyplot as plt
|
| 8 |
+
import einops
|
| 9 |
+
|
| 10 |
+
from huggingface_hub import snapshot_download
|
| 11 |
+
from visionts import VisionTSpp, freq_to_seasonality_list
|
| 12 |
+
|
| 13 |
+
# ========================
|
| 14 |
+
# 配置
|
| 15 |
+
# ========================
|
| 16 |
+
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
|
| 17 |
+
REPO_ID = "Lefei/VisionTSpp"
|
| 18 |
+
LOCAL_DIR = "./hf_models/VisionTSpp"
|
| 19 |
+
CKPT_PATH = os.path.join(LOCAL_DIR, "visiontspp_model.ckpt")
|
| 20 |
+
|
| 21 |
+
ARCH = 'mae_base' # 可选: 'mae_base', 'mae_large', 'mae_huge'
|
| 22 |
+
|
| 23 |
+
# 下载模型(Space 构建时执行一次)
|
| 24 |
+
if not os.path.exists(CKPT_PATH):
|
| 25 |
+
os.makedirs(LOCAL_DIR, exist_ok=True)
|
| 26 |
+
print("Downloading model from Hugging Face Hub...")
|
| 27 |
+
snapshot_download(repo_id=REPO_ID, local_dir=LOCAL_DIR, local_dir_use_symlinks=False)
|
| 28 |
+
|
| 29 |
+
# 加载模型(全局加载一次)
|
| 30 |
+
model = VisionTSpp(
|
| 31 |
+
ARCH,
|
| 32 |
+
ckpt_path=CKPT_PATH,
|
| 33 |
+
quantile=True,
|
| 34 |
+
clip_input=True,
|
| 35 |
+
complete_no_clip=False,
|
| 36 |
+
color=True
|
| 37 |
+
).to(DEVICE)
|
| 38 |
+
print(f"Model loaded on {DEVICE}")
|
| 39 |
+
|
| 40 |
+
# ========================
|
| 41 |
+
# 核心预测与可视化函数
|
| 42 |
+
# ========================
|
| 43 |
+
|
| 44 |
+
def visual_ts(true, preds=None, lookback_len_visual=300, pred_len=96):
|
| 45 |
+
"""
|
| 46 |
+
可视化真实值 vs 预测值
|
| 47 |
+
true: [T, nvars]
|
| 48 |
+
preds: [T, nvars],与 true 对齐
|
| 49 |
+
"""
|
| 50 |
+
if isinstance(true, torch.Tensor):
|
| 51 |
+
true = true.cpu().numpy()
|
| 52 |
+
if isinstance(preds, torch.Tensor):
|
| 53 |
+
preds = preds.cpu().numpy()
|
| 54 |
+
|
| 55 |
+
nvars = true.shape[1]
|
| 56 |
+
|
| 57 |
+
FIG_WIDTH = 12
|
| 58 |
+
FIG_HEIGHT_PER_VAR = 1.8
|
| 59 |
+
FONT_S = 10
|
| 60 |
+
|
| 61 |
+
fig, axes = plt.subplots(
|
| 62 |
+
nrows=nvars, ncols=1, figsize=(FIG_WIDTH, nvars * FIG_HEIGHT_PER_VAR), sharex=True,
|
| 63 |
+
gridspec_kw={'height_ratios': [1] * nvars}
|
| 64 |
+
)
|
| 65 |
+
if nvars == 1:
|
| 66 |
+
axes = [axes]
|
| 67 |
+
|
| 68 |
+
lookback_len = true.shape[0] - pred_len
|
| 69 |
+
|
| 70 |
+
for i, ax in enumerate(axes):
|
| 71 |
+
ax.plot(true[:, i], label='Ground Truth', color='gray', linewidth=1.8)
|
| 72 |
+
if preds is not None:
|
| 73 |
+
ax.plot(np.arange(lookback_len, len(true)), preds[lookback_len:, i],
|
| 74 |
+
label='Prediction (Median)', color='blue', linewidth=1.8)
|
| 75 |
+
|
| 76 |
+
# 分隔线
|
| 77 |
+
y_min, y_max = ax.get_ylim()
|
| 78 |
+
ax.vlines(x=lookback_len, ymin=y_min, ymax=y_max,
|
| 79 |
+
colors='gray', linestyles='--', alpha=0.7, linewidth=1)
|
| 80 |
+
|
| 81 |
+
ax.set_yticks([])
|
| 82 |
+
ax.set_xticks([])
|
| 83 |
+
ax.text(0.005, 0.8, f'Var {i+1}', transform=ax.transAxes, fontsize=FONT_S, weight='bold')
|
| 84 |
+
|
| 85 |
+
# 图例
|
| 86 |
+
if preds is not None:
|
| 87 |
+
handles, labels = axes[0].get_legend_handles_labels()
|
| 88 |
+
fig.legend(handles, labels, loc='upper right', bbox_to_anchor=(0.9, 0.9), prop={'size': FONT_S})
|
| 89 |
+
|
| 90 |
+
# 计算 MSE/MAE
|
| 91 |
+
if preds is not None:
|
| 92 |
+
true_eval = true[-pred_len:]
|
| 93 |
+
pred_eval = preds[-pred_len:]
|
| 94 |
+
mse = np.mean((true_eval - pred_eval) ** 2)
|
| 95 |
+
mae = np.mean(np.abs(true_eval - pred_eval))
|
| 96 |
+
fig.suptitle(f'MSE: {mse:.4f}, MAE: {mae:.4f}', fontsize=12, y=0.95)
|
| 97 |
+
|
| 98 |
+
plt.subplots_adjust(hspace=0)
|
| 99 |
+
return fig # 返回 matplotlib figure
|
| 100 |
+
|
| 101 |
+
|
| 102 |
+
def predict_and_visualize(df, context_len=960, pred_len=394, freq="15Min"):
|
| 103 |
+
"""
|
| 104 |
+
输入: df (pandas.DataFrame),必须包含 'date' 列和其他数值列
|
| 105 |
+
输出: matplotlib 图像
|
| 106 |
+
"""
|
| 107 |
+
if 'date' in df.columns:
|
| 108 |
+
df['date'] = pd.to_datetime(df['date'])
|
| 109 |
+
df = df.set_index('date')
|
| 110 |
+
else:
|
| 111 |
+
# 如果没有 date 列,假设是纯数值序列
|
| 112 |
+
df = df.copy()
|
| 113 |
+
|
| 114 |
+
data = df.values # [T, nvars]
|
| 115 |
+
nvars = data.shape[1]
|
| 116 |
+
|
| 117 |
+
if data.shape[0] < context_len + pred_len:
|
| 118 |
+
raise ValueError(f"数据太短,至少需要 {context_len + pred_len} 行,当前只有 {data.shape[0]} 行。")
|
| 119 |
+
|
| 120 |
+
# 归一化(使用训练集前 70% 的统计量)
|
| 121 |
+
train_len = int(len(data) * 0.7)
|
| 122 |
+
x_mean = data[:train_len].mean(axis=0, keepdims=True)
|
| 123 |
+
x_std = data[:train_len].std(axis=0, keepdims=True) + 1e-8
|
| 124 |
+
data_norm = (data - x_mean) / x_std
|
| 125 |
+
|
| 126 |
+
# 取最后一段作为测试窗口
|
| 127 |
+
end_idx = len(data_norm)
|
| 128 |
+
start_idx = end_idx - (context_len + pred_len)
|
| 129 |
+
x = data_norm[start_idx:start_idx + context_len] # [context_len, nvars]
|
| 130 |
+
y_true = data_norm[start_idx + context_len:end_idx] # [pred_len, nvars]
|
| 131 |
+
|
| 132 |
+
# 设置周期性
|
| 133 |
+
periodicity_list = freq_to_seasonality_list(freq)
|
| 134 |
+
periodicity = periodicity_list[0] if periodicity_list else 1
|
| 135 |
+
color_list = [i % 3 for i in range(nvars)] # RGB 循环着色
|
| 136 |
+
|
| 137 |
+
# 更新模型配置
|
| 138 |
+
model.update_config(
|
| 139 |
+
context_len=context_len,
|
| 140 |
+
pred_len=pred_len,
|
| 141 |
+
periodicity=periodicity,
|
| 142 |
+
num_patch_input=7,
|
| 143 |
+
padding_mode='constant'
|
| 144 |
+
)
|
| 145 |
+
|
| 146 |
+
# 转为 tensor
|
| 147 |
+
x_tensor = torch.FloatTensor(x).unsqueeze(0).to(DEVICE) # [1, T, N]
|
| 148 |
+
y_true_tensor = torch.FloatTensor(y_true).unsqueeze(0).to(DEVICE)
|
| 149 |
+
|
| 150 |
+
# 预测
|
| 151 |
+
with torch.no_grad():
|
| 152 |
+
y_pred, _, _, _, _ = model.forward(x_tensor, export_image=True, color_list=color_list)
|
| 153 |
+
y_pred_median = y_pred[0] # median prediction
|
| 154 |
+
|
| 155 |
+
# 反归一化
|
| 156 |
+
y_true_original = y_true * x_std + x_mean
|
| 157 |
+
y_pred_original = y_pred_median[0].cpu().numpy() * x_std + x_mean
|
| 158 |
+
|
| 159 |
+
# 构造完整序列用于可视化
|
| 160 |
+
full_true = np.concatenate([x * x_std + x_mean, y_true_original], axis=0)
|
| 161 |
+
full_pred = np.concatenate([x * x_std + x_mean, y_pred_original], axis=0)
|
| 162 |
+
|
| 163 |
+
# 可视化
|
| 164 |
+
fig = visual_ts(true=full_true, preds=full_pred, lookback_len_visual=context_len, pred_len=pred_len)
|
| 165 |
+
return fig
|
| 166 |
+
|
| 167 |
+
|
| 168 |
+
# ========================
|
| 169 |
+
# 默认数据加载
|
| 170 |
+
# ========================
|
| 171 |
+
def load_default_data():
|
| 172 |
+
data_path = "./datasets/ETTm1.csv"
|
| 173 |
+
if not os.path.exists(data_path):
|
| 174 |
+
os.makedirs("./datasets", exist_ok=True)
|
| 175 |
+
url = "https://raw.githubusercontent.com/zhouhaoyi/ETDataset/main/ETT-small/ETTm1.csv"
|
| 176 |
+
df = pd.read_csv(url)
|
| 177 |
+
df.to_csv(data_path, index=False)
|
| 178 |
+
else:
|
| 179 |
+
df = pd.read_csv(data_path)
|
| 180 |
+
return df
|
| 181 |
+
|
| 182 |
+
|
| 183 |
+
# ========================
|
| 184 |
+
# Gradio 界面
|
| 185 |
+
# ========================
|
| 186 |
+
def run_forecast(file_input, context_len, pred_len, freq):
|
| 187 |
+
if file_input is not None:
|
| 188 |
+
df = pd.read_csv(file_input.name)
|
| 189 |
+
title = "Uploaded Data Prediction"
|
| 190 |
+
else:
|
| 191 |
+
df = load_default_data()
|
| 192 |
+
title = "Default ETTm1 Dataset Prediction"
|
| 193 |
+
|
| 194 |
+
try:
|
| 195 |
+
fig = predict_and_visualize(df, context_len=int(context_len), pred_len=int(pred_len), freq=freq)
|
| 196 |
+
fig.suptitle(title, fontsize=14, y=0.98)
|
| 197 |
+
plt.close(fig) # 防止重复显示
|
| 198 |
+
return fig
|
| 199 |
+
except Exception as e:
|
| 200 |
+
# 返回错误信息图像
|
| 201 |
+
fig, ax = plt.subplots()
|
| 202 |
+
ax.text(0.5, 0.5, f"Error: {str(e)}", ha='center', va='center', wrap=True)
|
| 203 |
+
ax.axis('off')
|
| 204 |
+
plt.close(fig)
|
| 205 |
+
return fig
|
| 206 |
+
|
| 207 |
+
|
| 208 |
+
# Gradio UI
|
| 209 |
+
with gr.Blocks(title="VisionTS++ 时间序列预测") as demo:
|
| 210 |
+
gr.Markdown("# 🕰️ VisionTS++ 时间序列预测平台")
|
| 211 |
+
gr.Markdown("上传你的多变量时间序列 CSV 文件,或使用默认 ETTm1 数据进行预测。")
|
| 212 |
+
|
| 213 |
+
with gr.Row():
|
| 214 |
+
file_input = gr.File(label="上传 CSV 文件(含 date 列或纯数值)", file_types=['.csv'])
|
| 215 |
+
with gr.Column():
|
| 216 |
+
context_len = gr.Number(label="历史长度 (context_len)", value=960)
|
| 217 |
+
pred_len = gr.Number(label="预测长度 (pred_len)", value=394)
|
| 218 |
+
freq = gr.Textbox(label="时间频率 (如 15Min, H)", value="15Min")
|
| 219 |
+
|
| 220 |
+
btn = gr.Button("🚀 开始预测")
|
| 221 |
+
|
| 222 |
+
output_plot = gr.Plot(label="预测结果")
|
| 223 |
+
|
| 224 |
+
btn.click(
|
| 225 |
+
fn=run_forecast,
|
| 226 |
+
inputs=[file_input, context_len, pred_len, freq],
|
| 227 |
+
outputs=output_plot
|
| 228 |
+
)
|
| 229 |
+
|
| 230 |
+
# 示例:使用默认数据
|
| 231 |
+
gr.Examples(
|
| 232 |
+
examples=[
|
| 233 |
+
[None, 960, 394, "15Min"]
|
| 234 |
+
],
|
| 235 |
+
inputs=[file_input, context_len, pred_len, freq],
|
| 236 |
+
outputs=output_plot,
|
| 237 |
+
fn=run_forecast,
|
| 238 |
+
label="点击运行默认示例"
|
| 239 |
+
)
|
| 240 |
+
|
| 241 |
+
# 启动
|
| 242 |
+
if __name__ == "__main__":
|
| 243 |
+
demo.launch()
|