Spaces:
Sleeping
Sleeping
Create Whisper/API.md
Browse files- docs/Whisper/API.md +72 -0
docs/Whisper/API.md
ADDED
|
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# API Documentation for `Lenylvt/Whisper-API`
|
| 2 |
+
This documentation outlines how to use the Whisper API through Python and JavaScript.
|
| 3 |
+
|
| 4 |
+
## API Endpoint
|
| 5 |
+
|
| 6 |
+
The API can be accessed using the `gradio_client` Python library [docs](https://www.gradio.app/guides/getting-started-with-the-python-client) or the `@gradio/client` JavaScript package [docs](https://www.gradio.app/guides/getting-started-with-the-js-client).
|
| 7 |
+
|
| 8 |
+
## Python Usage
|
| 9 |
+
|
| 10 |
+
### Step 1: Installation
|
| 11 |
+
|
| 12 |
+
To begin, ensure the `gradio_client` library is installed.
|
| 13 |
+
|
| 14 |
+
```python
|
| 15 |
+
pip install gradio_client
|
| 16 |
+
```
|
| 17 |
+
|
| 18 |
+
### Step 2: Making a Request
|
| 19 |
+
|
| 20 |
+
Identify the API endpoint for the function you wish to utilize. Replace the placeholders in the following code snippet with your actual input data. If accessing a private Space, you may need to include your Hugging Face token.
|
| 21 |
+
|
| 22 |
+
**API Name**: `/predict`
|
| 23 |
+
|
| 24 |
+
```python
|
| 25 |
+
from gradio_client import Client
|
| 26 |
+
|
| 27 |
+
client = Client("Lenylvt/Whisper-API")
|
| 28 |
+
result = client.predict(
|
| 29 |
+
"https://github.com/gradio-app/gradio/raw/main/test/test_files/audio_sample.wav", # filepath in 'Upload Audio' Audio component
|
| 30 |
+
"base", # Model size in 'Model Size' Dropdown component (e.g., 'base', 'small', 'medium', 'large', 'large-v2', 'large-v3')
|
| 31 |
+
api_name="/predict"
|
| 32 |
+
)
|
| 33 |
+
print(result)
|
| 34 |
+
```
|
| 35 |
+
|
| 36 |
+
**Return Type(s):**
|
| 37 |
+
|
| 38 |
+
- A `str` representing the output in the 'output' Textbox component.
|
| 39 |
+
|
| 40 |
+
## JavaScript Usage
|
| 41 |
+
|
| 42 |
+
### Step 1: Installation
|
| 43 |
+
|
| 44 |
+
For JavaScript usage, make sure the `@gradio/client` package is included in your project.
|
| 45 |
+
|
| 46 |
+
```bash
|
| 47 |
+
npm i -D @gradio/client
|
| 48 |
+
```
|
| 49 |
+
|
| 50 |
+
### Step 2: Making a Request
|
| 51 |
+
|
| 52 |
+
Similar to Python, locate the API endpoint that fits your requirements. Replace the placeholder values with your own data. Include your Hugging Face token if you are accessing a private Space.
|
| 53 |
+
|
| 54 |
+
**API Name**: `/predict`
|
| 55 |
+
|
| 56 |
+
```javascript
|
| 57 |
+
import { client } from "@gradio/client";
|
| 58 |
+
const response_0 = await fetch("https://github.com/gradio-app/gradio/raw/main/test/test_files/audio_sample.wav");
|
| 59 |
+
const exampleAudio = await response_0.blob();
|
| 60 |
+
|
| 61 |
+
const app = await client("Lenylvt/Whisper-API");
|
| 62 |
+
const result = await app.predict("/predict", [
|
| 63 |
+
exampleAudio, // blob in 'Upload Audio' Audio component
|
| 64 |
+
"base", // string in 'Model Size' Dropdown component
|
| 65 |
+
]);
|
| 66 |
+
|
| 67 |
+
console.log(result.data);
|
| 68 |
+
```
|
| 69 |
+
|
| 70 |
+
**Return Type(s):**
|
| 71 |
+
|
| 72 |
+
- A `string` representing the output in the 'output' Textbox component.
|