Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,60 +1,61 @@
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM
|
| 3 |
|
| 4 |
-
# Load the model and tokenizer
|
| 5 |
-
|
| 6 |
-
model = AutoModelForCausalLM.from_pretrained("unsloth/Llama-3.2-1B")
|
| 7 |
|
| 8 |
-
|
| 9 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
|
| 11 |
-
#
|
| 12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
generated_text = text_gen_pipeline(prompt,
|
| 14 |
max_length=max_length,
|
| 15 |
temperature=temperature,
|
| 16 |
top_p=top_p,
|
| 17 |
top_k=top_k,
|
| 18 |
-
repetition_penalty=repetition_penalty,
|
| 19 |
-
no_repeat_ngram_size=no_repeat_ngram_size,
|
| 20 |
num_return_sequences=1)
|
| 21 |
return generated_text[0]['generated_text']
|
| 22 |
|
| 23 |
-
# Gradio
|
| 24 |
with gr.Blocks() as demo:
|
| 25 |
gr.Markdown("## Text Generation with Llama 3.2 - 1B")
|
|
|
|
| 26 |
|
| 27 |
-
# Input box for user prompt
|
| 28 |
prompt_input = gr.Textbox(label="Input (Prompt)", placeholder="Enter your prompt here...")
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
max_length_input = gr.Slider(minimum=10, maximum=200, value=50, step=10, label="Maximum Length")
|
| 32 |
-
|
| 33 |
-
# Slider for temperature (controls creativity)
|
| 34 |
-
temperature_input = gr.Slider(minimum=0.1, maximum=1.0, value=0.7, step=0.1, label="Temperature (creativity)")
|
| 35 |
-
|
| 36 |
-
# Slider for top_p (nucleus sampling)
|
| 37 |
top_p_input = gr.Slider(minimum=0.1, maximum=1.0, value=0.9, step=0.1, label="Top-p (nucleus sampling)")
|
|
|
|
|
|
|
|
|
|
| 38 |
|
| 39 |
-
# Slider for top_k (controls diversity)
|
| 40 |
-
top_k_input = gr.Slider(minimum=1, maximum=100, value=50, step=1, label="Top-k (sampling diversity)")
|
| 41 |
-
|
| 42 |
-
# Slider for repetition penalty
|
| 43 |
-
repetition_penalty_input = gr.Slider(minimum=1.0, maximum=2.0, value=1.2, step=0.1, label="Repetition Penalty")
|
| 44 |
-
|
| 45 |
-
# Slider for no_repeat_ngram_size
|
| 46 |
-
no_repeat_ngram_size_input = gr.Slider(minimum=1, maximum=10, value=3, step=1, label="No Repeat N-Gram Size")
|
| 47 |
-
|
| 48 |
-
# Output box for the generated text
|
| 49 |
output_text = gr.Textbox(label="Generated Text")
|
| 50 |
-
|
| 51 |
-
# Submit button
|
| 52 |
generate_button = gr.Button("Generate")
|
| 53 |
|
| 54 |
-
# Action on button click
|
| 55 |
generate_button.click(generate_text,
|
| 56 |
inputs=[prompt_input, max_length_input, temperature_input, top_p_input, top_k_input, repetition_penalty_input, no_repeat_ngram_size_input],
|
| 57 |
outputs=output_text)
|
| 58 |
|
| 59 |
-
# Launch the app
|
| 60 |
demo.launch()
|
|
|
|
| 1 |
+
# Step 2: Import necessary libraries
|
| 2 |
import gradio as gr
|
| 3 |
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM
|
| 4 |
|
| 5 |
+
# Step 3: Load the model and tokenizer
|
| 6 |
+
model_name = "unsloth/Llama-3.2-1B"
|
|
|
|
| 7 |
|
| 8 |
+
try:
|
| 9 |
+
# Attempt to load the tokenizer and model
|
| 10 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 11 |
+
model = AutoModelForCausalLM.from_pretrained(model_name)
|
| 12 |
+
print(f"Successfully loaded model: {model_name}")
|
| 13 |
+
except Exception as e:
|
| 14 |
+
# Handle errors and notify the user
|
| 15 |
+
print(f"Error loading model or tokenizer: {e}")
|
| 16 |
+
tokenizer = None
|
| 17 |
+
model = None
|
| 18 |
|
| 19 |
+
# Step 4: Use a pipeline for text generation if model is loaded
|
| 20 |
+
if model is not None and tokenizer is not None:
|
| 21 |
+
text_gen_pipeline = pipeline("text-generation", model=model, tokenizer=tokenizer)
|
| 22 |
+
else:
|
| 23 |
+
text_gen_pipeline = None
|
| 24 |
+
|
| 25 |
+
# Step 5: Define the text generation function
|
| 26 |
+
def generate_text(prompt, max_length=40, temperature=0.8, top_p=0.9, top_k=40, repetition_penalty=1.5, no_repeat_ngram_size=4):
|
| 27 |
+
if text_gen_pipeline is None:
|
| 28 |
+
return "Model not loaded. Please check the model name or try a different one."
|
| 29 |
+
|
| 30 |
generated_text = text_gen_pipeline(prompt,
|
| 31 |
max_length=max_length,
|
| 32 |
temperature=temperature,
|
| 33 |
top_p=top_p,
|
| 34 |
top_k=top_k,
|
| 35 |
+
repetition_penalty=repetition_penalty,
|
| 36 |
+
no_repeat_ngram_size=no_repeat_ngram_size,
|
| 37 |
num_return_sequences=1)
|
| 38 |
return generated_text[0]['generated_text']
|
| 39 |
|
| 40 |
+
# Step 6: Set up the Gradio interface
|
| 41 |
with gr.Blocks() as demo:
|
| 42 |
gr.Markdown("## Text Generation with Llama 3.2 - 1B")
|
| 43 |
+
gr.Markdown("For more details, check out this [Google Colab notebook](https://colab.research.google.com/drive/1TCyQNWMQzsjit_z3-0jHCQYfFTpawh8r#scrollTo=5-6MhJj0ZVpk).")
|
| 44 |
|
|
|
|
| 45 |
prompt_input = gr.Textbox(label="Input (Prompt)", placeholder="Enter your prompt here...")
|
| 46 |
+
max_length_input = gr.Slider(minimum=10, maximum=200, value=40, step=10, label="Maximum Length")
|
| 47 |
+
temperature_input = gr.Slider(minimum=0.1, maximum=1.0, value=0.8, step=0.1, label="Temperature (creativity)")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 48 |
top_p_input = gr.Slider(minimum=0.1, maximum=1.0, value=0.9, step=0.1, label="Top-p (nucleus sampling)")
|
| 49 |
+
top_k_input = gr.Slider(minimum=1, maximum=100, value=40, step=1, label="Top-k (sampling diversity)")
|
| 50 |
+
repetition_penalty_input = gr.Slider(minimum=1.0, maximum=2.0, value=1.5, step=0.1, label="Repetition Penalty")
|
| 51 |
+
no_repeat_ngram_size_input = gr.Slider(minimum=1, maximum=10, value=4, step=1, label="No Repeat N-Gram Size")
|
| 52 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 53 |
output_text = gr.Textbox(label="Generated Text")
|
|
|
|
|
|
|
| 54 |
generate_button = gr.Button("Generate")
|
| 55 |
|
|
|
|
| 56 |
generate_button.click(generate_text,
|
| 57 |
inputs=[prompt_input, max_length_input, temperature_input, top_p_input, top_k_input, repetition_penalty_input, no_repeat_ngram_size_input],
|
| 58 |
outputs=output_text)
|
| 59 |
|
| 60 |
+
# Step 7: Launch the app
|
| 61 |
demo.launch()
|