Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -8,15 +8,15 @@ model = AutoModelForCausalLM.from_pretrained("unsloth/Llama-3.2-1B")
|
|
| 8 |
# Use a pipeline for text generation
|
| 9 |
text_gen_pipeline = pipeline("text-generation", model=model, tokenizer=tokenizer)
|
| 10 |
|
| 11 |
-
# Text generation function with
|
| 12 |
-
def generate_text(prompt, max_length=
|
| 13 |
generated_text = text_gen_pipeline(prompt,
|
| 14 |
max_length=max_length,
|
| 15 |
temperature=temperature,
|
| 16 |
top_p=top_p,
|
| 17 |
top_k=top_k,
|
| 18 |
-
repetition_penalty=repetition_penalty, #
|
| 19 |
-
no_repeat_ngram_size=no_repeat_ngram_size, #
|
| 20 |
num_return_sequences=1)
|
| 21 |
return generated_text[0]['generated_text']
|
| 22 |
|
|
@@ -28,22 +28,22 @@ with gr.Blocks() as demo:
|
|
| 28 |
prompt_input = gr.Textbox(label="Input (Prompt)", placeholder="Enter your prompt here...")
|
| 29 |
|
| 30 |
# Slider for maximum text length
|
| 31 |
-
max_length_input = gr.Slider(minimum=10, maximum=200, value=
|
| 32 |
|
| 33 |
# Slider for temperature (controls creativity)
|
| 34 |
-
temperature_input = gr.Slider(minimum=0.1, maximum=1.0, value=0.
|
| 35 |
|
| 36 |
# Slider for top_p (nucleus sampling)
|
| 37 |
top_p_input = gr.Slider(minimum=0.1, maximum=1.0, value=0.9, step=0.1, label="Top-p (nucleus sampling)")
|
| 38 |
|
| 39 |
# Slider for top_k (controls diversity)
|
| 40 |
-
top_k_input = gr.Slider(minimum=1, maximum=100, value=
|
| 41 |
|
| 42 |
# Slider for repetition penalty
|
| 43 |
-
repetition_penalty_input = gr.Slider(minimum=1.0, maximum=2.0, value=1.
|
| 44 |
|
| 45 |
# Slider for no_repeat_ngram_size
|
| 46 |
-
no_repeat_ngram_size_input = gr.Slider(minimum=1, maximum=10, value=
|
| 47 |
|
| 48 |
# Output box for the generated text
|
| 49 |
output_text = gr.Textbox(label="Generated Text")
|
|
|
|
| 8 |
# Use a pipeline for text generation
|
| 9 |
text_gen_pipeline = pipeline("text-generation", model=model, tokenizer=tokenizer)
|
| 10 |
|
| 11 |
+
# Text generation function with repetition penalty and no_repeat_ngram_size
|
| 12 |
+
def generate_text(prompt, max_length=50, temperature=0.7, top_p=0.9, top_k=50, repetition_penalty=1.2, no_repeat_ngram_size=3):
|
| 13 |
generated_text = text_gen_pipeline(prompt,
|
| 14 |
max_length=max_length,
|
| 15 |
temperature=temperature,
|
| 16 |
top_p=top_p,
|
| 17 |
top_k=top_k,
|
| 18 |
+
repetition_penalty=repetition_penalty, # Penalty to avoid repetitions
|
| 19 |
+
no_repeat_ngram_size=no_repeat_ngram_size, # Avoid repeating n-grams
|
| 20 |
num_return_sequences=1)
|
| 21 |
return generated_text[0]['generated_text']
|
| 22 |
|
|
|
|
| 28 |
prompt_input = gr.Textbox(label="Input (Prompt)", placeholder="Enter your prompt here...")
|
| 29 |
|
| 30 |
# Slider for maximum text length
|
| 31 |
+
max_length_input = gr.Slider(minimum=10, maximum=200, value=50, step=10, label="Maximum Length")
|
| 32 |
|
| 33 |
# Slider for temperature (controls creativity)
|
| 34 |
+
temperature_input = gr.Slider(minimum=0.1, maximum=1.0, value=0.7, step=0.1, label="Temperature (creativity)")
|
| 35 |
|
| 36 |
# Slider for top_p (nucleus sampling)
|
| 37 |
top_p_input = gr.Slider(minimum=0.1, maximum=1.0, value=0.9, step=0.1, label="Top-p (nucleus sampling)")
|
| 38 |
|
| 39 |
# Slider for top_k (controls diversity)
|
| 40 |
+
top_k_input = gr.Slider(minimum=1, maximum=100, value=50, step=1, label="Top-k (sampling diversity)")
|
| 41 |
|
| 42 |
# Slider for repetition penalty
|
| 43 |
+
repetition_penalty_input = gr.Slider(minimum=1.0, maximum=2.0, value=1.2, step=0.1, label="Repetition Penalty")
|
| 44 |
|
| 45 |
# Slider for no_repeat_ngram_size
|
| 46 |
+
no_repeat_ngram_size_input = gr.Slider(minimum=1, maximum=10, value=3, step=1, label="No Repeat N-Gram Size")
|
| 47 |
|
| 48 |
# Output box for the generated text
|
| 49 |
output_text = gr.Textbox(label="Generated Text")
|