File size: 61,335 Bytes
			
			| ebb7cff cf605b8 ebb7cff 5468308 ebb7cff 5468308 ebb7cff cf605b8 ebb7cff 5468308 cf605b8 ebb7cff 5468308 ebb7cff 5468308 ebb7cff 5468308 cf605b8 ebb7cff 5468308 ebb7cff cf605b8 ebb7cff cf605b8 ebb7cff cf605b8 ebb7cff cf605b8 ebb7cff cf605b8 ebb7cff cf605b8 ebb7cff cf605b8 ebb7cff cf605b8 ebb7cff cf605b8 ebb7cff cf605b8 ebb7cff cf605b8 ebb7cff cf605b8 ebb7cff cf605b8 ebb7cff cf605b8 ebb7cff cf605b8 5468308 ebb7cff cf605b8 ebb7cff cf605b8 ebb7cff 5468308 ebb7cff | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 | # File: enhanced_gradio_interface.py
import asyncio
from collections import defaultdict
import json
import os
import re
import time
import uuid
from typing import List, Dict, Any, Optional
from dataclasses import dataclass
from threading import Lock
import threading
import json
import os
import queue
import traceback
import uuid
from typing import Coroutine, Dict, List, Any, Optional, Callable
from dataclasses import dataclass
from queue import Queue, Empty
from threading import Lock, Event, Thread
import threading
from concurrent.futures import ThreadPoolExecutor
import time
import gradio as gr
from openai import AsyncOpenAI, OpenAI
import pyttsx3
from rich.console import Console
BASE_URL="http://localhost:1234/v1"
BASE_API_KEY="not-needed"
BASE_CLIENT = AsyncOpenAI(
    base_url=BASE_URL,
    api_key=BASE_API_KEY
) # Global state for client
BASEMODEL_ID = "leroydyer/qwen/qwen3-0.6b-q4_k_m.gguf"  # Global state for selected model ID
CLIENT =OpenAI(
    base_url=BASE_URL,
    api_key=BASE_API_KEY
) # Global state for client
# --- Global Variables (if needed) ---
console = Console()
# --- Configuration ---
LOCAL_BASE_URL = "http://localhost:1234/v1"
LOCAL_API_KEY = "not-needed"
# Available model options
MODEL_OPTIONS = {
    "Local LM Studio": LOCAL_BASE_URL,
}
DEFAULT_TEMPERATURE = 0.7
DEFAULT_MAX_TOKENS = 5000
console = Console()
# --- Canvas Artifact Support ---
@dataclass
class CanvasArtifact:
    id: str
    type: str  # 'code', 'diagram', 'text', 'image'
    content: str
    title: str
    timestamp: float
    metadata: Dict[str, Any]
@dataclass
class LLMMessage:
    role: str
    content: str
    message_id: str = None
    conversation_id: str = None
    timestamp: float = None
    metadata: Dict[str, Any] = None
    def __post_init__(self):
        if self.message_id is None:
            self.message_id = str(uuid.uuid4())
        if self.timestamp is None:
            self.timestamp = time.time()
        if self.metadata is None:
            self.metadata = {}
@dataclass
class LLMRequest:
    message: LLMMessage
    response_event: str = None
    callback: Callable = None
    def __post_init__(self):
        if self.response_event is None:
            self.response_event = f"llm_response_{self.message.message_id}"
@dataclass
class LLMResponse:
    message: LLMMessage
    request_id: str
    success: bool = True
    error: str = None
# --- Event Manager (copied from your original code or imported) ---
class EventManager:
    def __init__(self):
        self._handlers = defaultdict(list)
        self._lock = threading.Lock()
    def register(self, event: str, handler: Callable):
        with self._lock:
            self._handlers[event].append(handler)
    def unregister(self, event: str, handler: Callable):
        with self._lock:
            if event in self._handlers and handler in self._handlers[event]:
                self._handlers[event].remove(handler)
    def raise_event(self, event: str, data: Any):
        with self._lock:
            handlers = self._handlers[event][:]
        for handler in handlers:
            try:
                handler(data)
            except Exception as e:
                console.log(f"Error in event handler for {event}: {e}", style="bold red")
EVENT_MANAGER = EventManager()
def RegisterEvent(event: str, handler: Callable):
    EVENT_MANAGER.register(event, handler)
def RaiseEvent(event: str, data: Any):
    EVENT_MANAGER.raise_event(event, data)
def UnregisterEvent(event: str, handler: Callable):
    EVENT_MANAGER.unregister(event, handler)
class LLMAgent:
    """Main Agent Driver ! 
    Agent For Multiple messages at once , 
    has a message queing service as well as agenerator method for easy intergration with console     
    applications as well as ui !"""
    def __init__(
        self,
        model_id: str = BASEMODEL_ID,
        system_prompt: str = None,
        max_queue_size: int = 1000,
        max_retries: int = 3,
        timeout: int = 30000,
        max_tokens: int = 5000,
        temperature: float = 0.3,
        base_url: str = "http://localhost:1234/v1",
        api_key: str = "not-needed",
        generate_fn: Callable[[List[Dict[str, str]]], Coroutine[Any, Any, str]] = None,
    ):
        self.model_id = model_id
        self.system_prompt = system_prompt or "You are a helpful AI assistant."
        self.request_queue = Queue(maxsize=max_queue_size)
        self.max_retries = max_retries
        self.timeout = timeout
        self.is_running = False
        self._stop_event = Event()
        self.processing_thread = None
        # Canvas artifacts
        self.canvas_artifacts: Dict[str, List[CanvasArtifact]] = defaultdict(list)
        self.max_canvas_artifacts = 1000  
        # Conversation tracking
        self.conversations: Dict[str, List[LLMMessage]] = {}
        self.max_history_length = 100
        self._generate = generate_fn or self._default_generate
        self.api_key = api_key
        self.base_url = base_url        
        self.max_tokens = max_tokens
        self.temperature = temperature
        self.async_client = self.CreateClient(base_url, api_key)
        self.current_conversation = "default"
                
        # Active requests waiting for responses
        self.pending_requests: Dict[str, LLMRequest] = {}
        self.pending_requests_lock = Lock()
        
        # Register internal event handlers
        self._register_event_handlers()
        # Register internal event handlers
        self._register_event_handlers()
        # Speech synthesis
        try:
            self.tts_engine = pyttsx3.init()
            self.setup_tts()
            self.speech_enabled = True
        except Exception as e:
            console.log(f"[yellow]TTS not available: {e}[/yellow]")
            self.speech_enabled = False
               
        console.log("[bold green]π Enhanced LLM Agent Initialized[/bold green]")
          
        # Start the processing thread immediately
        self.start()
    def setup_tts(self):
        """Configure text-to-speech engine"""
        if hasattr(self, 'tts_engine'):
            voices = self.tts_engine.getProperty('voices')
            if voices:
                self.tts_engine.setProperty('voice', voices[0].id)
            self.tts_engine.setProperty('rate', 150)
            self.tts_engine.setProperty('volume', 0.8)
    def speak(self, text: str):
        """Convert text to speech in a non-blocking way"""
        if not hasattr(self, 'speech_enabled') or not self.speech_enabled:
            return
            
        def _speak():
            try:
                # Clean text for speech (remove markdown, code blocks)
                clean_text = re.sub(r'```.*?```', '', text, flags=re.DOTALL)
                clean_text = re.sub(r'`.*?`', '', clean_text)
                clean_text = clean_text.strip()
                if clean_text:
                    self.tts_engine.say(clean_text) 
                    self.tts_engine.runAndWait()
                else:
                    self.tts_engine.say(text)  
                    self.tts_engine.runAndWait()                    
            except Exception as e:
                console.log(f"[red]TTS Error: {e}[/red]")
        
        thread = threading.Thread(target=_speak, daemon=True)
        thread.start()
      
    async def _default_generate(self, messages: List[Dict[str, str]]) -> str:
        """Default generate function if none provided"""
        return await self.openai_generate(messages)
    def create_interface(self):
        """Create the full LCARS-styled interface"""
        lcars_css = """
        :root {
            --lcars-orange: #FF9900;
            --lcars-red: #FF0033;
            --lcars-blue: #6699FF;
            --lcars-purple: #CC99FF;
            --lcars-pale-blue: #99CCFF;
            --lcars-black: #000000;
            --lcars-dark-blue: #3366CC;
            --lcars-gray: #424242;
            --lcars-yellow: #FFFF66;
        }
        body {
            background: var(--lcars-black);
            color: var(--lcars-orange);
            font-family: 'Antonio', 'LCD', 'Courier New', monospace;
            margin: 0;
            padding: 0;
        }
        .gradio-container {
            background: var(--lcars-black) !important;
            min-height: 100vh;
        }
        .lcars-container {
            background: var(--lcars-black);
            border: 4px solid var(--lcars-orange);
            border-radius: 0 30px 0 0;
            min-height: 100vh;
            padding: 20px;
        }
        .lcars-header {
            background: linear-gradient(90deg, var(--lcars-red), var(--lcars-orange));
            padding: 20px 40px;
            border-radius: 0 60px 0 0;
            margin: -20px -20px 20px -20px;
            border-bottom: 6px solid var(--lcars-blue);
        }
        .lcars-title {
            font-size: 2.5em;
            font-weight: bold;
            color: var(--lcars-black);
            margin: 0;
        }
        .lcars-subtitle {
            font-size: 1.2em;
            color: var(--lcars-black);
            margin: 10px 0 0 0;
        }
        .lcars-panel {
            background: rgba(66, 66, 66, 0.9);
            border: 2px solid var(--lcars-orange);
            border-radius: 0 20px 0 20px;
            padding: 15px;
            margin-bottom: 15px;
        }
        .lcars-button {
            background: var(--lcars-orange);
            color: var(--lcars-black) !important;
            border: none !important;
            border-radius: 0 15px 0 15px !important;
            padding: 10px 20px !important;
            font-family: inherit !important;
            font-weight: bold !important;
            margin: 5px !important;
        }
        .lcars-button:hover {
            background: var(--lcars-red) !important;
        }
        .lcars-input {
            background: var(--lcars-black) !important;
            color: var(--lcars-orange) !important;
            border: 2px solid var(--lcars-blue) !important;
            border-radius: 0 10px 0 10px !important;
            padding: 10px !important;
        }
        .lcars-chatbot {
            background: var(--lcars-black) !important;
            border: 2px solid var(--lcars-purple) !important;
            border-radius: 0 15px 0 15px !important;
        }
        .status-indicator {
            display: inline-block;
            width: 12px;
            height: 12px;
            border-radius: 50%;
            background: var(--lcars-red);
            margin-right: 8px;
        }
        .status-online {
            background: var(--lcars-blue);
            animation: pulse 2s infinite;
        }
        @keyframes pulse {
            0% { opacity: 1; }
            50% { opacity: 0.5; }
            100% { opacity: 1; }
        }
        """
        with gr.Blocks(css=lcars_css, theme=gr.themes.Default(), title="LCARS Terminal") as interface:
            with gr.Column(elem_classes="lcars-container"):
                # Header
                with gr.Row(elem_classes="lcars-header"):
                    gr.Markdown("""
                    <div style="text-align: center; width: 100%;">
                        <div class="lcars-title">π LCARS TERMINAL</div>
                        <div class="lcars-subtitle">STARFLEET AI DEVELOPMENT CONSOLE</div>
                        <div style="margin-top: 10px;">
                            <span class="status-indicator status-online"></span>
                            <span style="color: var(--lcars-black); font-weight: bold;">SYSTEM ONLINE</span>
                        </div>
                    </div>
                    """)
                # Main Content
                with gr.Row():
                    # Left Sidebar
                    with gr.Column(scale=1):
                        # Configuration Panel
                        with gr.Column(elem_classes="lcars-panel"):
                            gr.Markdown("### π§ LM STUDIO CONFIGURATION")
                            # Local LM Studio settings
                            with gr.Row():
                                base_url = gr.Textbox(
                                    value=BASE_URL,
                                    label="LM Studio URL",
                                    elem_classes="lcars-input"
                                )
                                api_key = gr.Textbox(
                                    value=BASE_API_KEY,
                                    label="API Key",
                                    type="password",
                                    elem_classes="lcars-input"
                                )
                            with gr.Row():
                                model_dropdown = gr.Dropdown(
                                    choices=["Fetching models..."],
                                    value="Fetching models...",
                                    label="AI Model",
                                    elem_classes="lcars-input"
                                )
                                fetch_models_btn = gr.Button("π‘ Fetch Models", elem_classes="lcars-button")
                            with gr.Row():
                                temperature = gr.Slider(0.0, 2.0, value=0.7, label="Temperature")
                                max_tokens = gr.Slider(128, 8192, value=2000, step=128, label="Max Tokens")
                            with gr.Row():
                                update_config_btn = gr.Button("πΎ Apply Config", elem_classes="lcars-button")
                                speech_toggle = gr.Checkbox(value=True, label="π Speech Output")
                        # Canvas Artifacts
                        with gr.Column(elem_classes="lcars-panel"):
                            gr.Markdown("### π¨ CANVAS ARTIFACTS")
                            artifact_display = gr.JSON(label="")
                            with gr.Row():
                                refresh_artifacts_btn = gr.Button("π Refresh", elem_classes="lcars-button")
                                clear_canvas_btn = gr.Button("ποΈ Clear Canvas", elem_classes="lcars-button")
                    # Main Content Area
                    with gr.Column(scale=2):
                        # Code Canvas
                        with gr.Accordion("π» COLLABORATIVE CODE CANVAS", open=False):
                            code_editor = gr.Code(
                                value="# Welcome to LCARS Collaborative Canvas\\nprint('Hello, Starfleet!')",
                                language="python",
                                lines=15,
                                label=""
                            )
                            with gr.Row():
                                load_to_chat_btn = gr.Button("π¬ Discuss Code", elem_classes="lcars-button")
                                analyze_btn = gr.Button("π Analyze", elem_classes="lcars-button")
                                optimize_btn = gr.Button("β‘ Optimize", elem_classes="lcars-button")
                        # Chat Interface
                        with gr.Column(elem_classes="lcars-panel"):
                            gr.Markdown("### π¬ MISSION LOG")
                            chatbot = gr.Chatbot(label="", height=300)
                            with gr.Row():
                                message_input = gr.Textbox(
                                    placeholder="Enter your command or query...",
                                    show_label=False,
                                    lines=2,
                                    scale=4
                                )
                                send_btn = gr.Button("π SEND", elem_classes="lcars-button", scale=1)
                        # Status
                        with gr.Row():
                            status_display = gr.Textbox(
                                value="LCARS terminal operational. Awaiting commands.",
                                label="Status",
                                max_lines=2
                            )
                            with gr.Column(scale=0):
                                clear_chat_btn = gr.Button("ποΈ Clear Chat", elem_classes="lcars-button")
                                new_session_btn = gr.Button("π New Session", elem_classes="lcars-button")
            # === EVENT HANDLERS ===
            async def fetch_models_updated(base_url_val, api_key_val):
                models = await LLMAgent.fetch_available_models(base_url_val, api_key_val)
                if models:
                    return gr.update(choices=models, value=models[0])
                return gr.update(choices=["No models found"])
            def update_agent_connection(model_id, base_url_val, api_key_val):
                self.agent = LLMAgent(
                    model_id=model_id, 
                    base_url=base_url_val,
                    api_key=api_key_val,
                    generate_fn=LLMAgent.openai_generate
                )
                return f"β
 Connected to LM Studio: {model_id}"
            async def process_message(message, history, speech_enabled):
                if not message.strip():
                    return "", history, "Please enter a message"
                history = history + [[message, None]]
                try:
                    response = await self.chat_with_canvas(
                        message, self.current_conversation, include_canvas=True
                    )
                    history[-1][1] = response
                    if speech_enabled and self.speech_enabled:
                        self.speak(response)
                    artifacts = self.get_canvas_summary(self.current_conversation)
                    status = f"β
 Response received. Canvas artifacts: {len(artifacts)}"
                    return "", history, status, artifacts
                except Exception as e:
                    error_msg = f"β Error: {str(e)}"
                    history[-1][1] = error_msg
                    return "", history, error_msg, self.get_canvas_summary(self.current_conversation)
            def get_artifacts():
                return self.get_canvas_summary(self.current_conversation)
            def clear_canvas():
                self.clear_canvas(self.current_conversation)
                return [], "β
 Canvas cleared"
            def clear_chat():
                self.clear_conversation(self.current_conversation)
                return [], "β
 Chat cleared"
            def new_session():
                self.clear_conversation(self.current_conversation)
                self.clear_canvas(self.current_conversation)
                return [], "# New session started\\nprint('Ready!')", "π New session started", []
            # Connect events
            fetch_models_btn.click(fetch_models_updated, 
                                 inputs=[base_url, api_key],
                                 outputs=model_dropdown)
            update_config_btn.click(update_agent_connection,
                                inputs=[model_dropdown, base_url, api_key],
                                outputs=status_display)
            send_btn.click(process_message,
                         inputs=[message_input, chatbot, speech_toggle],
                         outputs=[message_input, chatbot, status_display, artifact_display])
            message_input.submit(process_message,
                               inputs=[message_input, chatbot, speech_toggle],
                               outputs=[message_input, chatbot, status_display, artifact_display])
            refresh_artifacts_btn.click(get_artifacts, outputs=artifact_display)
            clear_canvas_btn.click(clear_canvas, outputs=[artifact_display, status_display])
            clear_chat_btn.click(clear_chat, outputs=[chatbot, status_display])
            new_session_btn.click(new_session, outputs=[chatbot, code_editor, status_display, artifact_display])
            interface.load(get_artifacts, outputs=artifact_display)
        return interface
    
    def _register_event_handlers(self):
        """Register internal event handlers for response routing"""
        RegisterEvent("llm_internal_response", self._handle_internal_response)
    
    def _handle_internal_response(self, response: LLMResponse):
        """Route responses to the appropriate request handlers"""
        console.log(f"[bold cyan]Handling internal response for: {response.request_id}[/bold cyan]")
        
        request = None
        with self.pending_requests_lock:
            if response.request_id in self.pending_requests:
                request = self.pending_requests[response.request_id]
                del self.pending_requests[response.request_id]
                console.log(f"Found pending request for: {response.request_id}")
            else:
                console.log(f"No pending request found for: {response.request_id}", style="yellow")
                return
        
        # Raise the specific response event
        if request.response_event:
            console.log(f"[bold green]Raising event: {request.response_event}[/bold green]")
            RaiseEvent(request.response_event, response)
        
        # Call callback if provided
        if request.callback:
            try:
                console.log(f"[bold yellow]Calling callback for: {response.request_id}[/bold yellow]")
                request.callback(response)
            except Exception as e:
                console.log(f"Error in callback: {e}", style="bold red")
    
    def _add_to_conversation_history(self, conversation_id: str, message: LLMMessage):
        """Add message to conversation history"""
        if conversation_id not in self.conversations:
            self.conversations[conversation_id] = []
        
        self.conversations[conversation_id].append(message)
        
        # Trim history if too long
        if len(self.conversations[conversation_id]) > self.max_history_length * 2:
            self.conversations[conversation_id] = self.conversations[conversation_id][-(self.max_history_length * 2):]
    
    def _build_messages_from_conversation(self, conversation_id: str, new_message: LLMMessage) -> List[Dict[str, str]]:
        """Build message list from conversation history"""
        messages = []
        
        # Add system prompt
        if self.system_prompt:
            messages.append({"role": "system", "content": self.system_prompt})
        
        # Add conversation history
        if conversation_id in self.conversations:
            for msg in self.conversations[conversation_id][-self.max_history_length:]:
                messages.append({"role": msg.role, "content": msg.content})
        
        # Add the new message
        messages.append({"role": new_message.role, "content": new_message.content})
        
        return messages
    
    def _process_llm_request(self, request: LLMRequest):
        """Process a single LLM request"""
        console.log(f"[bold green]Processing LLM request: {request.message.message_id}[/bold green]")
        try:
            # Build messages for LLM
            messages = self._build_messages_from_conversation(
                request.message.conversation_id or "default",
                request.message
            )
            
            console.log(f"Calling LLM with {len(messages)} messages")
            
            # Call LLM - Use sync call for thread compatibility
            response_content = self._call_llm_sync(messages)
            
            console.log(f"[bold green]LLM response received: {response_content}...[/bold green]")
            
            # Create response message
            response_message = LLMMessage(
                role="assistant",
                content=response_content,
                conversation_id=request.message.conversation_id,
                metadata={"request_id": request.message.message_id}
            )
            
            # Update conversation history
            self._add_to_conversation_history(
                request.message.conversation_id or "default",
                request.message
            )
            self._add_to_conversation_history(
                request.message.conversation_id or "default",
                response_message
            )
            
            # Create and send response
            response = LLMResponse(
                message=response_message,
                request_id=request.message.message_id,
                success=True
            )
            
            console.log(f"[bold blue]Sending internal response for: {request.message.message_id}[/bold blue]")
            RaiseEvent("llm_internal_response", response)
            
        except Exception as e:
            console.log(f"[bold red]Error processing LLM request: {e}[/bold red]")
            traceback.print_exc()
            # Create error response
            error_response = LLMResponse(
                message=LLMMessage(
                    role="system",
                    content=f"Error: {str(e)}",
                    conversation_id=request.message.conversation_id
                ),
                request_id=request.message.message_id,
                success=False,
                error=str(e)
            )
            
            RaiseEvent("llm_internal_response", error_response)
    
    def _call_llm_sync(self, messages: List[Dict[str, str]]) -> str:
        """Sync call to the LLM with retry logic"""
        console.log(f"Making LLM call to {self.model_id}")
        for attempt in range(self.max_retries):
            try:
                response = CLIENT.chat.completions.create(
                    model=self.model_id,
                    messages=messages,
                    temperature=self.temperature,
                    max_tokens=self.max_tokens
                )
                content = response.choices[0].message.content
                console.log(f"LLM call successful, response length: {len(content)}")
                return content
            except Exception as e:
                console.log(f"LLM call attempt {attempt + 1} failed: {e}")
                if attempt == self.max_retries - 1:
                    raise e
 # Wait before retry
    
    def _process_queue(self):
        """Main queue processing loop"""
        console.log("[bold cyan]LLM Agent queue processor started[/bold cyan]")
        while not self._stop_event.is_set():
            try:
                request = self.request_queue.get(timeout=1.0)
                if request:
                    console.log(f"Got request from queue: {request.message.message_id}")
                    self._process_llm_request(request)
                    self.request_queue.task_done()
            except Empty:
                continue
            except Exception as e:
                console.log(f"Error in queue processing: {e}", style="bold red")
                traceback.print_exc()
        console.log("[bold cyan]LLM Agent queue processor stopped[/bold cyan]")
    
    def send_message(
        self,
        content: str,
        role: str = "user",
        conversation_id: str = None,
        response_event: str = None,
        callback: Callable = None,
        metadata: Dict = None
    ) -> str:
        """Send a message to the LLM and get response via events"""
        if not self.is_running:
            raise RuntimeError("LLM Agent is not running. Call start() first.")
        
        # Create message
        message = LLMMessage(
            role=role,
            content=content,
            conversation_id=conversation_id,
            metadata=metadata or {}
        )
        
        # Create request
        request = LLMRequest(
            message=message,
            response_event=response_event,
            callback=callback
        )
        
        # Store in pending requests BEFORE adding to queue
        with self.pending_requests_lock:
            self.pending_requests[message.message_id] = request
            console.log(f"Added to pending requests: {message.message_id}")
        
        # Add to queue
        try:
            self.request_queue.put(request, timeout=5.0)
            console.log(f"[bold magenta]Message queued: {message.message_id}, Content: {content[:50]}...[/bold magenta]")
            return message.message_id
        except queue.Full:
            console.log(f"[bold red]Queue full, cannot send message[/bold red]")
            with self.pending_requests_lock:
                if message.message_id in self.pending_requests:
                    del self.pending_requests[message.message_id]
            raise RuntimeError("LLM Agent queue is full")
    
    async def chat(self, messages: List[Dict[str, str]]) -> str:
        """
        Async chat method that sends message via queue and returns response string.
        This is the main method you should use.
        """
        # Create future for the response
        loop = asyncio.get_event_loop()
        response_future = loop.create_future()
        def chat_callback(response: LLMResponse):
            """Callback when LLM responds - thread-safe"""
            console.log(f"[bold yellow]β CHAT CALLBACK TRIGGERED![/bold yellow]")
            
            if not response_future.done():
                if response.success:
                    content = response.message.content
                    console.log(f"Callback received content: {content}...")
                    # Schedule setting the future result on the main event loop
                    loop.call_soon_threadsafe(response_future.set_result, content)
                else:
                    console.log(f"Error in response: {response.error}")
                    error_msg = f"β Error: {response.error}"
                    loop.call_soon_threadsafe(response_future.set_result, error_msg)
            else:
                console.log(f"[bold red]Future already done, ignoring callback[/bold red]")
        console.log(f"Sending message to LLM agent...")
        # Extract the actual message content from the messages list
        user_message = ""
        for msg in messages:
            if msg.get("role") == "user":
                user_message = msg.get("content", "")
                break
            
        if not user_message.strip():
            return ""
        # Send message with callback using the queue system
        try:
            message_id = self.send_message(
                content=user_message,
                conversation_id="default",
                callback=chat_callback
            )
            console.log(f"Message sent with ID: {message_id}, waiting for response...")
            # Wait for the response and return it
            try:
                response = await asyncio.wait_for(response_future, timeout=self.timeout)
                console.log(f"[bold green]β Chat complete! Response length: {len(response)}[/bold green]")
                return response
            except asyncio.TimeoutError:
                console.log("[bold red]Response timeout[/bold red]")
                # Clean up the pending request
                with self.pending_requests_lock:
                    if message_id in self.pending_requests:
                        del self.pending_requests[message_id]
                return "β Response timeout - check if LLM server is running"
        except Exception as e:
            console.log(f"[bold red]Error sending message: {e}[/bold red]")
            traceback.print_exc()
            return f"β Error sending message: {e}"
    
    def start(self):
        """Start the LLM agent"""
        if not self.is_running:
            self.is_running = True
            self._stop_event.clear()
            self.processing_thread = Thread(target=self._process_queue, daemon=True)
            self.processing_thread.start()
            console.log("[bold green]LLM Agent started[/bold green]")
    
    def stop(self):
        """Stop the LLM agent"""
        console.log("Stopping LLM Agent...")
        self._stop_event.set()
        if self.processing_thread and self.processing_thread.is_alive():
            self.processing_thread.join(timeout=10)
        self.is_running = False
        console.log("LLM Agent stopped")
    
    def get_conversation_history(self, conversation_id: str = "default") -> List[LLMMessage]:
        """Get conversation history"""
        return self.conversations.get(conversation_id, [])[:]
    
    def clear_conversation(self, conversation_id: str = "default"):
        """Clear conversation history"""
        if conversation_id in self.conversations:
            del self.conversations[conversation_id]
    async def _chat(self, messages: List[Dict[str, str]]) -> str:
        return await self._generate(messages)
    
    @staticmethod
    async def openai_generate(messages: List[Dict[str, str]], max_tokens: int = 8096, temperature: float = 0.4, model: str = BASEMODEL_ID,tools=None) -> str:
        """Static method for generating responses using OpenAI API"""
        try:
            resp = await BASE_CLIENT.chat.completions.create(
                model=model,
                messages=messages,
                temperature=temperature,
                max_tokens=max_tokens,
                tools=tools
            )
            response_text = resp.choices[0].message.content or ""
            return response_text
        except Exception as e:
            console.log(f"[bold red]Error in openai_generate: {e}[/bold red]")
            return f"[LLM_Agent Error - openai_generate: {str(e)}]"
    
    async def _call_(self, messages: List[Dict[str, str]]) -> str:
        """Internal call method using instance client"""
        try:
            resp = await self.async_client.chat.completions.create(
                model=self.model_id,
                messages=messages,
                temperature=self.temperature,
                max_tokens=self.max_tokens
            )
            response_text = resp.choices[0].message.content or ""
            return response_text
        except Exception as e:
            console.log(f"[bold red]Error in _call_: {e}[/bold red]")
            return f"[LLM_Agent Error - _call_: {str(e)}]"  
    
    @staticmethod              
    def CreateClient(base_url: str, api_key: str) -> AsyncOpenAI:
        '''Create async OpenAI Client required for multi tasking'''
        return AsyncOpenAI(
            base_url=base_url,
            api_key=api_key
        ) 
    
    @staticmethod
    async def fetch_available_models(base_url: str, api_key: str) -> List[str]:
        """Fetches available models from the OpenAI API."""
        try:
            async_client = AsyncOpenAI(base_url=base_url, api_key=api_key)
            models = await async_client.models.list()
            model_choices = [model.id for model in models.data]
            return model_choices
        except Exception as e:
            console.log(f"[bold red]LLM_Agent Error fetching models: {e}[/bold red]")
            return ["LLM_Agent Error fetching models"]   
    
    def get_models(self) -> List[str]:             
        """Get available models using instance credentials"""
        return asyncio.run(self.fetch_available_models(self.base_url, self.api_key))
    
    def get_queue_size(self) -> int:
        """Get current queue size"""
        return self.request_queue.qsize()
    
    def get_pending_requests_count(self) -> int:
        """Get number of pending requests"""
        with self.pending_requests_lock:
            return len(self.pending_requests)
    
    def get_status(self) :
        """Get agent status information"""
        return str({
            "is_running": self.is_running,
            "queue_size": self.get_queue_size(),
            "pending_requests": self.get_pending_requests_count(),
            "conversations_count": len(self.conversations),
            "model": self.model_id, "BaseURL": self.base_url
        })
    def direct_chat(self, user_message: str, conversation_id: str = "default") -> str:
        """
        Send a message and get a response using direct API call.
        """
        try:
            # Create message object
            message = LLMMessage(role="user", content=user_message, conversation_id=conversation_id)
            
            # Build messages for LLM
            messages = self._build_messages_from_conversation(conversation_id, message)
            console.log(f"Calling LLM at {self.base_url} with {len(messages)} messages")
            
            # Make the direct API call
            response = CLIENT.chat.completions.create(
                model=self.model_id,
                messages=messages,
                temperature=self.temperature,
                max_tokens=self.max_tokens
            )
            response_content = response.choices[0].message.content
            console.log(f"[bold green]LLM response received: {response_content[:50]}...[/bold green]")
            # Update conversation history
            self._add_to_conversation_history(conversation_id, message)
            response_message = LLMMessage(role="assistant", content=response_content, conversation_id=conversation_id)
            self._add_to_conversation_history(conversation_id, response_message)
            return response_content
        except Exception as e:
            console.log(f"[bold red]Error in chat: {e}[/bold red]")
            traceback.print_exc()
            return f"β Error communicating with LLM: {str(e)}"
    # --- TEST Canvas Methods ---
    def add_artifact(self, conversation_id: str, artifact_type: str, content: str, title: str = "", metadata: Dict = None):
        artifact = CanvasArtifact(
            id=str(uuid.uuid4()),
            type=artifact_type,
            content=content,
            title=title,
            timestamp=time.time(),
            metadata=metadata or {}
        )
        self.canvas_artifacts[conversation_id].append(artifact)
    def get_canvas_artifacts(self, conversation_id: str = "default") -> List[CanvasArtifact]:
        return self.canvas_artifacts.get(conversation_id, [])
    def get_canvas_summary(self, conversation_id: str = "default") -> List[Dict[str, Any]]:
        artifacts = self.get_canvas_artifacts(conversation_id)
        return [{"id": a.id, "type": a.type, "title": a.title, "timestamp": a.timestamp} for a in artifacts]
    def clear_canvas(self, conversation_id: str = "default"):
        if conversation_id in self.canvas_artifacts:
            self.canvas_artifacts[conversation_id] = []
    def clear_conversation(self, conversation_id: str = "default"):
        if conversation_id in self.conversations:
            del self.conversations[conversation_id]
    def get_latest_code_artifact(self, conversation_id: str) -> Optional[str]:
        """Get the most recent code artifact content"""
        if conversation_id not in self.canvas_artifacts:
            return None
        
        for artifact in reversed(self.canvas_artifacts[conversation_id]):
            if artifact.type == "code":
                return artifact.content
        return None
    def get_canvas_context(self, conversation_id: str) -> str:
        """Get formatted canvas context for LLM prompts"""
        if conversation_id not in self.canvas_artifacts or not self.canvas_artifacts[conversation_id]:
            return ""
        
        context_lines = ["\n=== COLLABORATIVE CANVAS ARTIFACTS ==="]
        for artifact in self.canvas_artifacts[conversation_id][-10:]:  # Last 10 artifacts
            context_lines.append(f"\n--- {artifact.title} [{artifact.type.upper()}] ---")
            preview = artifact.content[:500] + "..." if len(artifact.content) > 500 else artifact.content
            context_lines.append(preview)
        
        return "\n".join(context_lines) + "\n=================================\n"
    def get_artifact_by_id(self, conversation_id: str, artifact_id: str) -> Optional[CanvasArtifact]:
        """Get specific artifact by ID"""
        if conversation_id not in self.canvas_artifacts:
            return None
            
        for artifact in self.canvas_artifacts[conversation_id]:
            if artifact.id == artifact_id:
                return artifact
        return None
    def _extract_artifacts_to_canvas(self, response: str, conversation_id: str):
        """Automatically extract code blocks and add to canvas"""
        # Find all code blocks with optional language specification
        code_blocks = re.findall(r'```(?:(\w+)\n)?(.*?)```', response, re.DOTALL)
        for i, (lang, code_block) in enumerate(code_blocks):
            if len(code_block.strip()) > 10:  # Only add substantial code blocks
                self.add_artifact_to_canvas(
                    conversation_id, 
                    code_block.strip(), 
                    "code", 
                    f"code_snippet_{lang or 'unknown'}_{len(self.canvas_artifacts.get(conversation_id, [])) + 1}"
                )
    async def chat_with_canvas(self, message: str, conversation_id: str, include_canvas: bool = False):
        """Chat method that can optionally include canvas context."""
        messages = [{"role": "user", "content": message}]
        
        if include_canvas:
            artifacts = self.get_canvas_summary(conversation_id)
            if artifacts:
                canvas_context = "Current Canvas Context:\\n" + "\\n".join([
                    f"- [{art['type'].upper()}] {art['title'] or 'Untitled'}: {art['content_preview']}"
                    for art in artifacts
                ])
                messages.insert(0, {"role": "system", "content": canvas_context})
        return await self.chat(messages)
         
         
     
console = Console()
# --- Canvas Artifact Support ---
@dataclass
class CanvasArtifact:
    id: str
    type: str  # 'code', 'diagram', 'text', 'image'
    content: str
    title: str
    timestamp: float
    metadata: Dict[str, Any]
class EnhancedAIAgent:
    """
    Wrapper around your AI_Agent that adds canvas/artifact management
    without modifying the original agent.
    """
    def __init__(self, ai_agent):
        self.agent = ai_agent
        self.canvas_artifacts: Dict[str, List[CanvasArtifact]] = {}
        self.max_canvas_artifacts = 50
        console.log("[bold green]β Enhanced AI Agent wrapper initialized[/bold green]")
    
    def add_artifact_to_canvas(self, conversation_id: str, content: str, 
                              artifact_type: str = "code", title: str = None):
        """Add artifacts to the collaborative canvas"""
        if conversation_id not in self.canvas_artifacts:
            self.canvas_artifacts[conversation_id] = []
        
        artifact = CanvasArtifact(
            id=str(uuid.uuid4())[:8],
            type=artifact_type,
            content=content,
            title=title or f"{artifact_type}_{len(self.canvas_artifacts[conversation_id]) + 1}",
            timestamp=time.time(),
            metadata={"conversation_id": conversation_id}
        )
        
        self.canvas_artifacts[conversation_id].append(artifact)
        
        # Keep only recent artifacts
        if len(self.canvas_artifacts[conversation_id]) > self.max_canvas_artifacts:
            self.canvas_artifacts[conversation_id] = self.canvas_artifacts[conversation_id][-self.max_canvas_artifacts:]
        
        console.log(f"[green]Added artifact to canvas: {artifact.title}[/green]")
        return artifact
    
    def get_canvas_context(self, conversation_id: str) -> str:
        """Get formatted canvas context for LLM prompts"""
        if conversation_id not in self.canvas_artifacts or not self.canvas_artifacts[conversation_id]:
            return ""
        
        context_lines = ["\n=== COLLABORATIVE CANVAS ARTIFACTS ==="]
        for artifact in self.canvas_artifacts[conversation_id][-10:]:  # Last 10 artifacts
            context_lines.append(f"\n--- {artifact.title} [{artifact.type.upper()}] ---")
            preview = artifact.content[:500] + "..." if len(artifact.content) > 500 else artifact.content
            context_lines.append(preview)
        
        return "\n".join(context_lines) + "\n=================================\n"
    
    async def chat_with_canvas(self, message: str, conversation_id: str = "default", 
                              include_canvas: bool = True) -> str:
        """Enhanced chat that includes canvas context"""
        # Build context with canvas artifacts if requested
        full_message = message
        if include_canvas:
            canvas_context = self.get_canvas_context(conversation_id)
            if canvas_context:
                full_message = f"{canvas_context}\n\nUser Query: {message}"
        
        try:
            # Use your original agent's multi_turn_chat method
            response = await self.agent.multi_turn_chat(full_message)
            
            # Auto-extract and add code artifacts to canvas
            self._extract_artifacts_to_canvas(response, conversation_id)
            
            return response
            
        except Exception as e:
            error_msg = f"Error in chat_with_canvas: {str(e)}"
            console.log(f"[red]{error_msg}[/red]")
            return error_msg
    
    def _extract_artifacts_to_canvas(self, response: str, conversation_id: str):
        """Automatically extract code blocks and add to canvas"""
        # Find all code blocks with optional language specification
        code_blocks = re.findall(r'```(?:(\w+)\n)?(.*?)```', response, re.DOTALL)
        for i, (lang, code_block) in enumerate(code_blocks):
            if len(code_block.strip()) > 10:  # Only add substantial code blocks
                self.add_artifact_to_canvas(
                    conversation_id, 
                    code_block.strip(), 
                    "code", 
                    f"code_snippet_{lang or 'unknown'}_{len(self.canvas_artifacts.get(conversation_id, [])) + 1}"
                )
    
    def get_canvas_summary(self, conversation_id: str) -> List[Dict]:
        """Get summary of canvas artifacts for display"""
        if conversation_id not in self.canvas_artifacts:
            return []
        
        artifacts = []
        for artifact in reversed(self.canvas_artifacts[conversation_id]):  # Newest first
            artifacts.append({
                "id": artifact.id,
                "type": artifact.type.upper(),
                "title": artifact.title,
                "preview": artifact.content[:100] + "..." if len(artifact.content) > 100 else artifact.content,
                "timestamp": time.strftime("%H:%M:%S", time.localtime(artifact.timestamp))
            })
        
        return artifacts
    
    def get_artifact_by_id(self, conversation_id: str, artifact_id: str) -> Optional[CanvasArtifact]:
        """Get specific artifact by ID"""
        if conversation_id not in self.canvas_artifacts:
            return None
            
        for artifact in self.canvas_artifacts[conversation_id]:
            if artifact.id == artifact_id:
                return artifact
        return None
    
    def clear_canvas(self, conversation_id: str = "default"):
        """Clear canvas artifacts"""
        if conversation_id in self.canvas_artifacts:
            self.canvas_artifacts[conversation_id] = []
            console.log(f"[yellow]Cleared canvas: {conversation_id}[/yellow]")
    
    def get_latest_code_artifact(self, conversation_id: str) -> Optional[str]:
        """Get the most recent code artifact content"""
        if conversation_id not in self.canvas_artifacts:
            return None
        
        for artifact in reversed(self.canvas_artifacts[conversation_id]):
            if artifact.type == "code":
                return artifact.content
        return None
console = Console()
# --- LCARS Styled Gradio Interface ---
class LcarsInterface:
    def __init__(self):
        # Local LM Studio only
        self.use_huggingface = False
        self.agent = LLMAgent(generate_fn=LLMAgent.openai_generate)
        self.current_conversation = "default"
    def create_interface(self):
        """Create the full LCARS-styled interface"""
        lcars_css = """
        :root {
            --lcars-orange: #FF9900;
            --lcars-red: #FF0033;
            --lcars-blue: #6699FF;
            --lcars-purple: #CC99FF;
            --lcars-pale-blue: #99CCFF;
            --lcars-black: #000000;
            --lcars-dark-blue: #3366CC;
            --lcars-gray: #424242;
            --lcars-yellow: #FFFF66;
        }
        body {
            background: var(--lcars-black);
            color: var(--lcars-orange);
            font-family: 'Antonio', 'LCD', 'Courier New', monospace;
            margin: 0;
            padding: 0;
        }
        .gradio-container {
            background: var(--lcars-black) !important;
            min-height: 100vh;
        }
        .lcars-container {
            background: var(--lcars-black);
            border: 4px solid var(--lcars-orange);
            border-radius: 0 30px 0 0;
            min-height: 100vh;
            padding: 20px;
        }
        .lcars-header {
            background: linear-gradient(90deg, var(--lcars-red), var(--lcars-orange));
            padding: 20px 40px;
            border-radius: 0 60px 0 0;
            margin: -20px -20px 20px -20px;
            border-bottom: 6px solid var(--lcars-blue);
        }
        .lcars-title {
            font-size: 2.5em;
            font-weight: bold;
            color: var(--lcars-black);
            margin: 0;
        }
        .lcars-subtitle {
            font-size: 1.2em;
            color: var(--lcars-black);
            margin: 10px 0 0 0;
        }
        .lcars-panel {
            background: rgba(66, 66, 66, 0.9);
            border: 2px solid var(--lcars-orange);
            border-radius: 0 20px 0 20px;
            padding: 15px;
            margin-bottom: 15px;
        }
        .lcars-button {
            background: var(--lcars-orange);
            color: var(--lcars-black) !important;
            border: none !important;
            border-radius: 0 15px 0 15px !important;
            padding: 10px 20px !important;
            font-family: inherit !important;
            font-weight: bold !important;
            margin: 5px !important;
        }
        .lcars-button:hover {
            background: var(--lcars-red) !important;
        }
        .lcars-input {
            background: var(--lcars-black) !important;
            color: var(--lcars-orange) !important;
            border: 2px solid var(--lcars-blue) !important;
            border-radius: 0 10px 0 10px !important;
            padding: 10px !important;
        }
        .lcars-chatbot {
            background: var(--lcars-black) !important;
            border: 2px solid var(--lcars-purple) !important;
            border-radius: 0 15px 0 15px !important;
        }
        .status-indicator {
            display: inline-block;
            width: 12px;
            height: 12px;
            border-radius: 50%;
            background: var(--lcars-red);
            margin-right: 8px;
        }
        .status-online {
            background: var(--lcars-blue);
            animation: pulse 2s infinite;
        }
        @keyframes pulse {
            0% { opacity: 1; }
            50% { opacity: 0.5; }
            100% { opacity: 1; }
        }
        """
        with gr.Blocks(css=lcars_css, theme=gr.themes.Default(), title="LCARS Terminal") as interface:
            with gr.Column(elem_classes="lcars-container"):
                # Header
                with gr.Row(elem_classes="lcars-header"):
                    gr.Markdown("""
                    <div style="text-align: center; width: 100%;">
                        <div class="lcars-title">π LCARS TERMINAL</div>
                        <div class="lcars-subtitle">STARFLEET AI DEVELOPMENT CONSOLE</div>
                        <div style="margin-top: 10px;">
                            <span class="status-indicator status-online"></span>
                            <span style="color: var(--lcars-black); font-weight: bold;">SYSTEM ONLINE</span>
                        </div>
                    </div>
                    """)
                # Main Content
                with gr.Row():
                    # Left Sidebar
                    with gr.Column(scale=1):
                        # Configuration Panel
                        with gr.Column(elem_classes="lcars-panel"):
                            gr.Markdown("### π§ LM STUDIO CONFIGURATION")
                            # Local LM Studio settings
                            with gr.Row():
                                base_url = gr.Textbox(
                                    value=LOCAL_BASE_URL,
                                    label="LM Studio URL",
                                    elem_classes="lcars-input"
                                )
                                api_key = gr.Textbox(
                                    value=LOCAL_API_KEY,
                                    label="API Key",
                                    type="password",
                                    elem_classes="lcars-input"
                                )
                            with gr.Row():
                                model_dropdown = gr.Dropdown(
                                    choices=["Fetching models..."],
                                    value="Fetching models...",
                                    label="AI Model",
                                    elem_classes="lcars-input"
                                )
                                fetch_models_btn = gr.Button("π‘ Fetch Models", elem_classes="lcars-button")
                            with gr.Row():
                                temperature = gr.Slider(0.0, 2.0, value=0.7, label="Temperature")
                                max_tokens = gr.Slider(128, 8192, value=2000, step=128, label="Max Tokens")
                            with gr.Row():
                                update_config_btn = gr.Button("πΎ Apply Config", elem_classes="lcars-button")
                                speech_toggle = gr.Checkbox(value=True, label="π Speech Output")
                        # Canvas Artifacts
                        with gr.Column(elem_classes="lcars-panel"):
                            gr.Markdown("### π¨ CANVAS ARTIFACTS")
                            artifact_display = gr.JSON(label="")
                            with gr.Row():
                                refresh_artifacts_btn = gr.Button("π Refresh", elem_classes="lcars-button")
                                clear_canvas_btn = gr.Button("ποΈ Clear Canvas", elem_classes="lcars-button")
                    # Main Content Area
                    with gr.Column(scale=2):
                        # Code Canvas
                        with gr.Accordion("π» COLLABORATIVE CODE CANVAS", open=False):
                            code_editor = gr.Code(
                                value="# Welcome to LCARS Collaborative Canvas\\nprint('Hello, Starfleet!')",
                                language="python",
                                lines=15,
                                label=""
                            )
                            with gr.Row():
                                load_to_chat_btn = gr.Button("π¬ Discuss Code", elem_classes="lcars-button")
                                analyze_btn = gr.Button("π Analyze", elem_classes="lcars-button")
                                optimize_btn = gr.Button("β‘ Optimize", elem_classes="lcars-button")
                        # Chat Interface
                        with gr.Column(elem_classes="lcars-panel"):
                            gr.Markdown("### π¬ MISSION LOG")
                            chatbot = gr.Chatbot(label="", height=300)
                            with gr.Row():
                                message_input = gr.Textbox(
                                    placeholder="Enter your command or query...",
                                    show_label=False,
                                    lines=2,
                                    scale=4
                                )
                                send_btn = gr.Button("π SEND", elem_classes="lcars-button", scale=1)
                        # Status
                        with gr.Row():
                            status_display = gr.Textbox(
                                value="LCARS terminal operational. Awaiting commands.",
                                label="Status",
                                max_lines=2
                            )
                            with gr.Column(scale=0):
                                clear_chat_btn = gr.Button("ποΈ Clear Chat", elem_classes="lcars-button")
                                new_session_btn = gr.Button("π New Session", elem_classes="lcars-button")
            # === EVENT HANDLERS ===
            async def fetch_models_updated(base_url_val, api_key_val):
                models = await LLMAgent.fetch_available_models(base_url_val, api_key_val)
                if models:
                    return gr.update(choices=models, value=models[0])
                return gr.update(choices=["No models found"])
            def update_agent_connection(model_id, base_url_val, api_key_val):
                self.agent = LLMAgent(
                    model_id=model_id, 
                    base_url=base_url_val,
                    api_key=api_key_val,
                    generate_fn=LLMAgent.openai_generate
                )
                return f"β
 Connected to LM Studio: {model_id}"
            async def process_message(message, history, speech_enabled):
                if not message.strip():
                    return "", history, "Please enter a message"
                history = history + [[message, None]]
                try:
                    response = await self.agent.chat_with_canvas(
                        message, self.current_conversation, include_canvas=True
                    )
                    history[-1][1] = response
                    if speech_enabled and self.agent.speech_enabled:
                        self.agent.speak(response)
                    artifacts = self.agent.get_canvas_summary(self.current_conversation)
                    status = f"β
 Response received. Canvas artifacts: {len(artifacts)}"
                    return "", history, status, artifacts
                except Exception as e:
                    error_msg = f"β Error: {str(e)}"
                    history[-1][1] = error_msg
                    return "", history, error_msg, self.agent.get_canvas_summary(self.current_conversation)
            def get_artifacts():
                return self.agent.get_canvas_summary(self.current_conversation)
            def clear_canvas():
                self.agent.clear_canvas(self.current_conversation)
                return [], "β
 Canvas cleared"
            def clear_chat():
                self.agent.clear_conversation(self.current_conversation)
                return [], "β
 Chat cleared"
            def new_session():
                self.agent.clear_conversation(self.current_conversation)
                self.agent.clear_canvas(self.current_conversation)
                return [], "# New session started\\nprint('Ready!')", "π New session started", []
            # Connect events
            fetch_models_btn.click(fetch_models_updated, 
                                 inputs=[base_url, api_key],
                                 outputs=model_dropdown)
            update_config_btn.click(update_agent_connection,
                                inputs=[model_dropdown, base_url, api_key],
                                outputs=status_display)
            send_btn.click(process_message,
                         inputs=[message_input, chatbot, speech_toggle],
                         outputs=[message_input, chatbot, status_display, artifact_display])
            message_input.submit(process_message,
                               inputs=[message_input, chatbot, speech_toggle],
                               outputs=[message_input, chatbot, status_display, artifact_display])
            refresh_artifacts_btn.click(get_artifacts, outputs=artifact_display)
            clear_canvas_btn.click(clear_canvas, outputs=[artifact_display, status_display])
            clear_chat_btn.click(clear_chat, outputs=[chatbot, status_display])
            new_session_btn.click(new_session, outputs=[chatbot, code_editor, status_display, artifact_display])
            interface.load(get_artifacts, outputs=artifact_display)
        return interface
# --- Main Application ---
def main():
    console.log("[bold blue]π Starting LCARS Terminal...[/bold blue]")
    interface = LcarsInterface()
    demo = interface.create_interface()
    demo.launch(
        share=False
    )
if __name__ == "__main__":
    main() | 
