Spaces:
				
			
			
	
			
			
		Sleeping
		
	
	
	
			
			
	
	
	
	
		
		
		Sleeping
		
	| import os | |
| import torch | |
| import streamlit as st | |
| from PIL import Image | |
| from torchvision import transforms | |
| from transformers import AutoModelForImageSegmentation | |
| def load_model(model_id_or_path="briaai/RMBG-2.0", precision=0, device="cuda"): | |
| model = AutoModelForImageSegmentation.from_pretrained( | |
| model_id_or_path, trust_remote_code=True | |
| ) | |
| torch.set_float32_matmul_precision(["high", "highest"][precision]) | |
| model.to(device) | |
| _ = model.eval() | |
| # Data settings | |
| image_size = (1024, 1024) | |
| transform_image = transforms.Compose( | |
| [ | |
| transforms.Resize(image_size), | |
| transforms.ToTensor(), | |
| transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), | |
| ] | |
| ) | |
| return model, transform_image | |
| def process(image: Image.Image) -> Image.Image: | |
| if "RMBG-2.0" not in os.listdir("."): | |
| os.system( | |
| "modelscope download --model AI-ModelScope/RMBG-2.0 --local_dir RMBG-2.0 --exclude *.onnx *.bin" | |
| ) | |
| device = "cuda" if torch.cuda.is_available() else "cpu" | |
| precision = 0 | |
| model, transform = load_model("RMBG-2.0", precision=precision, device=device) | |
| image = image.copy() | |
| input_images = transform(image).unsqueeze(0).to(device) | |
| with torch.no_grad(): | |
| preds = model(input_images)[-1].sigmoid().cpu() | |
| pred = preds[0].squeeze() | |
| pred_pil = transforms.ToPILImage()(pred) | |
| mask = pred_pil.resize(image.size) | |
| image.putalpha(mask) | |
| return mask, image | |