File size: 8,266 Bytes
6bd1e51
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
import gradio as gr
from transformers import pipeline, MarianTokenizer, AutoModelForSeq2SeqLM
import torch
import unicodedata
import re
import whisper
import tempfile
import os

import nltk
nltk.download('punkt')
from nltk.tokenize import sent_tokenize

import fitz  # PyMuPDF
import docx
from bs4 import BeautifulSoup
import markdown2
import chardet

# Device setup
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

# Model configuration
MODELS = {
    "english_wolof": {
        "model_name": "LocaleNLP/localenlp-eng-wol-0.03",
        "target_tag": ">>wol<<"
    },
    "wolof_english": {
        "model_name": "LocaleNLP/localenlp-wol-eng-0.03",
        "target_tag": ">>eng<<"
    },
    "english_hausa": {
        "model_name": "LocaleNLP/localenlp-eng-hau-0.01",
        "target_tag": ">>hau<<"
    },
    "hausa_english": {
        "model_name": "LocaleNLP/localenlp-hau-eng-0.01",
        "target_tag": ">>eng<<"
    }
}

# Global variables
translator = None
current_model = None
whisper_model = None

HF_TOKEN = os.getenv("HF_TOKEN")

def load_translation_model(input_lang, output_lang):
    global translator, current_model
    
    model_key = f"{input_lang.lower()}_{output_lang.lower()}"
    if model_key not in MODELS:
        raise ValueError(f"Translation from {input_lang} to {output_lang} is not supported")
    
    if current_model != model_key or translator is None:
        model_config = MODELS[model_key]
        model = AutoModelForSeq2SeqLM.from_pretrained(model_config["model_name"], token=HF_TOKEN).to(device)
        tokenizer = MarianTokenizer.from_pretrained(model_config["model_name"], token=HF_TOKEN)
        translator = {
            "pipeline": pipeline("translation", model=model, tokenizer=tokenizer, 
                               device=0 if device.type == 'cuda' else -1),
            "target_tag": model_config["target_tag"]
        }
        current_model = model_key
    
    return translator

def load_whisper_model():
    global whisper_model
    if whisper_model is None:
        whisper_model = whisper.load_model("base")
    return whisper_model

def transcribe_audio(audio_file):
    model = load_whisper_model()
    if isinstance(audio_file, str):
        audio_path = audio_file
    else:
        with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp:
            tmp.write(audio_file.read())
            audio_path = tmp.name
    result = model.transcribe(audio_path)
    if not isinstance(audio_file, str):
        os.remove(audio_path)
    return result["text"]

def extract_text_from_file(uploaded_file):
    if isinstance(uploaded_file, str):
        file_path = uploaded_file
        file_type = file_path.split('.')[-1].lower()
        with open(file_path, "rb") as f:
            content = f.read()
    else:
        file_type = uploaded_file.name.split('.')[-1].lower()
        content = uploaded_file.read()

    if file_type == "pdf":
        with fitz.open(stream=content, filetype="pdf") as doc:
            return "\n".join([page.get_text() for page in doc])
    elif file_type == "docx":
        if isinstance(uploaded_file, str):
            doc = docx.Document(file_path)
        else:
            doc = docx.Document(uploaded_file)
        return "\n".join([para.text for para in doc.paragraphs])
    else:
        encoding = chardet.detect(content)['encoding']
        if encoding:
            content = content.decode(encoding, errors='ignore')
        if file_type in ("html", "htm"):
            soup = BeautifulSoup(content, "html.parser")
            return soup.get_text()
        elif file_type == "md":
            html = markdown2.markdown(content)
            soup = BeautifulSoup(html, "html.parser")
            return soup.get_text()
        elif file_type == "srt":
            return re.sub(r"\d+\n\d{2}:\d{2}:\d{2},\d{3} --> .*?\n", "", content)
        elif file_type in ("txt", "text"):
            return content
        else:
            raise ValueError("Unsupported file type")

def translate(text, input_lang, output_lang):
    translator = load_translation_model(input_lang, output_lang)
    lang_tag = translator["target_tag"]
    translation_pipeline = translator["pipeline"]

    paragraphs = text.split("\n")
    translated_output = []

    with torch.no_grad():
        for para in paragraphs:
            if not para.strip():
                translated_output.append("")
                continue
            sentences = [s.strip() for s in para.split('. ') if s.strip()]
            formatted = [f"{lang_tag} {s}" for s in sentences]

            results = translation_pipeline(formatted,
                                 max_length=5000,
                                 num_beams=5,
                                 early_stopping=True,
                                 no_repeat_ngram_size=3,
                                 repetition_penalty=1.5,
                                 length_penalty=1.2)
            translated_sentences = [r['translation_text'].capitalize() for r in results]
            translated_output.append('. '.join(translated_sentences))

    return "\n".join(translated_output)

def process_input(input_mode, text, audio_file, file_obj, input_lang):
    input_text = ""
    if input_mode == "Text":
        input_text = text
    elif input_mode == "Audio":
        if audio_file is not None:
            input_text = transcribe_audio(audio_file)
    elif input_mode == "File":
        if file_obj is not None:
            input_text = extract_text_from_file(file_obj)
    return input_text

def translate_and_return(text, input_lang, output_lang):
    if not text.strip():
        return "No input text to translate."
    return translate(text, input_lang, output_lang)

def update_input_lang_dropdown(input_mode):
    if input_mode == "Audio":
        return gr.Dropdown(value="English", interactive=False)
    else:
        return gr.Dropdown(interactive=True)

# Gradio UI components
with gr.Blocks() as demo:
    gr.Markdown("## LocaleNLP Translator")
    gr.Markdown("Translate between English, Wolof, and Hausa using Localenlp models.")

    with gr.Row():
        input_mode = gr.Radio(choices=["Text", "Audio", "File"], label="Select input mode", value="Text")
    
    with gr.Row():
        input_lang = gr.Dropdown(choices=["English", "Wolof", "Hausa"], label="Input Language", value="English")
        output_lang = gr.Dropdown(choices=["English", "Wolof", "Hausa"], label="Output Language", value="Hausa")

    input_text = gr.Textbox(label="Enter text", lines=10, visible=True)
    audio_input = gr.Audio(label="Upload audio (.wav, .mp3, .m4a)", type="filepath", visible=False)
    file_input = gr.File(file_types=['.pdf', '.docx', '.html', '.htm', '.md', '.srt', '.txt'], label="Upload document", visible=False)

    extracted_text = gr.Textbox(label="Extracted / Transcribed Text", lines=10, interactive=False)
    translate_button = gr.Button("Translate")
    output_text = gr.Textbox(label="Translated Text", lines=10, interactive=False)

    def update_visibility(mode):
        return {
            input_text: gr.update(visible=(mode=="Text")),
            audio_input: gr.update(visible=(mode=="Audio")),
            file_input: gr.update(visible=(mode=="File")),
            extracted_text: gr.update(value="", visible=True),
            output_text: gr.update(value="")
        }

    input_mode.change(fn=update_visibility, inputs=input_mode, outputs=[input_text, audio_input, file_input, extracted_text, output_text])
    input_mode.change(fn=update_input_lang_dropdown, inputs=input_mode, outputs=input_lang)

    def handle_process(mode, text, audio, file_obj, in_lang):
        try:
            extracted = process_input(mode, text, audio, file_obj, in_lang)
            return extracted, ""
        except Exception as e:
            return "", f"Error: {str(e)}"

    translate_button.click(fn=handle_process, inputs=[input_mode, input_text, audio_input, file_input, input_lang], outputs=[extracted_text, output_text])

    def handle_translate(text, in_lang, out_lang):
        return translate_and_return(text, in_lang, out_lang)

    translate_button.click(fn=handle_translate, inputs=[extracted_text, input_lang, output_lang], outputs=output_text)

demo.launch()