Spaces:
Sleeping
Sleeping
File size: 8,266 Bytes
6bd1e51 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 |
import gradio as gr
from transformers import pipeline, MarianTokenizer, AutoModelForSeq2SeqLM
import torch
import unicodedata
import re
import whisper
import tempfile
import os
import nltk
nltk.download('punkt')
from nltk.tokenize import sent_tokenize
import fitz # PyMuPDF
import docx
from bs4 import BeautifulSoup
import markdown2
import chardet
# Device setup
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# Model configuration
MODELS = {
"english_wolof": {
"model_name": "LocaleNLP/localenlp-eng-wol-0.03",
"target_tag": ">>wol<<"
},
"wolof_english": {
"model_name": "LocaleNLP/localenlp-wol-eng-0.03",
"target_tag": ">>eng<<"
},
"english_hausa": {
"model_name": "LocaleNLP/localenlp-eng-hau-0.01",
"target_tag": ">>hau<<"
},
"hausa_english": {
"model_name": "LocaleNLP/localenlp-hau-eng-0.01",
"target_tag": ">>eng<<"
}
}
# Global variables
translator = None
current_model = None
whisper_model = None
HF_TOKEN = os.getenv("HF_TOKEN")
def load_translation_model(input_lang, output_lang):
global translator, current_model
model_key = f"{input_lang.lower()}_{output_lang.lower()}"
if model_key not in MODELS:
raise ValueError(f"Translation from {input_lang} to {output_lang} is not supported")
if current_model != model_key or translator is None:
model_config = MODELS[model_key]
model = AutoModelForSeq2SeqLM.from_pretrained(model_config["model_name"], token=HF_TOKEN).to(device)
tokenizer = MarianTokenizer.from_pretrained(model_config["model_name"], token=HF_TOKEN)
translator = {
"pipeline": pipeline("translation", model=model, tokenizer=tokenizer,
device=0 if device.type == 'cuda' else -1),
"target_tag": model_config["target_tag"]
}
current_model = model_key
return translator
def load_whisper_model():
global whisper_model
if whisper_model is None:
whisper_model = whisper.load_model("base")
return whisper_model
def transcribe_audio(audio_file):
model = load_whisper_model()
if isinstance(audio_file, str):
audio_path = audio_file
else:
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp:
tmp.write(audio_file.read())
audio_path = tmp.name
result = model.transcribe(audio_path)
if not isinstance(audio_file, str):
os.remove(audio_path)
return result["text"]
def extract_text_from_file(uploaded_file):
if isinstance(uploaded_file, str):
file_path = uploaded_file
file_type = file_path.split('.')[-1].lower()
with open(file_path, "rb") as f:
content = f.read()
else:
file_type = uploaded_file.name.split('.')[-1].lower()
content = uploaded_file.read()
if file_type == "pdf":
with fitz.open(stream=content, filetype="pdf") as doc:
return "\n".join([page.get_text() for page in doc])
elif file_type == "docx":
if isinstance(uploaded_file, str):
doc = docx.Document(file_path)
else:
doc = docx.Document(uploaded_file)
return "\n".join([para.text for para in doc.paragraphs])
else:
encoding = chardet.detect(content)['encoding']
if encoding:
content = content.decode(encoding, errors='ignore')
if file_type in ("html", "htm"):
soup = BeautifulSoup(content, "html.parser")
return soup.get_text()
elif file_type == "md":
html = markdown2.markdown(content)
soup = BeautifulSoup(html, "html.parser")
return soup.get_text()
elif file_type == "srt":
return re.sub(r"\d+\n\d{2}:\d{2}:\d{2},\d{3} --> .*?\n", "", content)
elif file_type in ("txt", "text"):
return content
else:
raise ValueError("Unsupported file type")
def translate(text, input_lang, output_lang):
translator = load_translation_model(input_lang, output_lang)
lang_tag = translator["target_tag"]
translation_pipeline = translator["pipeline"]
paragraphs = text.split("\n")
translated_output = []
with torch.no_grad():
for para in paragraphs:
if not para.strip():
translated_output.append("")
continue
sentences = [s.strip() for s in para.split('. ') if s.strip()]
formatted = [f"{lang_tag} {s}" for s in sentences]
results = translation_pipeline(formatted,
max_length=5000,
num_beams=5,
early_stopping=True,
no_repeat_ngram_size=3,
repetition_penalty=1.5,
length_penalty=1.2)
translated_sentences = [r['translation_text'].capitalize() for r in results]
translated_output.append('. '.join(translated_sentences))
return "\n".join(translated_output)
def process_input(input_mode, text, audio_file, file_obj, input_lang):
input_text = ""
if input_mode == "Text":
input_text = text
elif input_mode == "Audio":
if audio_file is not None:
input_text = transcribe_audio(audio_file)
elif input_mode == "File":
if file_obj is not None:
input_text = extract_text_from_file(file_obj)
return input_text
def translate_and_return(text, input_lang, output_lang):
if not text.strip():
return "No input text to translate."
return translate(text, input_lang, output_lang)
def update_input_lang_dropdown(input_mode):
if input_mode == "Audio":
return gr.Dropdown(value="English", interactive=False)
else:
return gr.Dropdown(interactive=True)
# Gradio UI components
with gr.Blocks() as demo:
gr.Markdown("## LocaleNLP Translator")
gr.Markdown("Translate between English, Wolof, and Hausa using Localenlp models.")
with gr.Row():
input_mode = gr.Radio(choices=["Text", "Audio", "File"], label="Select input mode", value="Text")
with gr.Row():
input_lang = gr.Dropdown(choices=["English", "Wolof", "Hausa"], label="Input Language", value="English")
output_lang = gr.Dropdown(choices=["English", "Wolof", "Hausa"], label="Output Language", value="Hausa")
input_text = gr.Textbox(label="Enter text", lines=10, visible=True)
audio_input = gr.Audio(label="Upload audio (.wav, .mp3, .m4a)", type="filepath", visible=False)
file_input = gr.File(file_types=['.pdf', '.docx', '.html', '.htm', '.md', '.srt', '.txt'], label="Upload document", visible=False)
extracted_text = gr.Textbox(label="Extracted / Transcribed Text", lines=10, interactive=False)
translate_button = gr.Button("Translate")
output_text = gr.Textbox(label="Translated Text", lines=10, interactive=False)
def update_visibility(mode):
return {
input_text: gr.update(visible=(mode=="Text")),
audio_input: gr.update(visible=(mode=="Audio")),
file_input: gr.update(visible=(mode=="File")),
extracted_text: gr.update(value="", visible=True),
output_text: gr.update(value="")
}
input_mode.change(fn=update_visibility, inputs=input_mode, outputs=[input_text, audio_input, file_input, extracted_text, output_text])
input_mode.change(fn=update_input_lang_dropdown, inputs=input_mode, outputs=input_lang)
def handle_process(mode, text, audio, file_obj, in_lang):
try:
extracted = process_input(mode, text, audio, file_obj, in_lang)
return extracted, ""
except Exception as e:
return "", f"Error: {str(e)}"
translate_button.click(fn=handle_process, inputs=[input_mode, input_text, audio_input, file_input, input_lang], outputs=[extracted_text, output_text])
def handle_translate(text, in_lang, out_lang):
return translate_and_return(text, in_lang, out_lang)
translate_button.click(fn=handle_translate, inputs=[extracted_text, input_lang, output_lang], outputs=output_text)
demo.launch() |