Spaces:
Sleeping
Sleeping
File size: 7,322 Bytes
6bd1e51 fe109d5 6bd1e51 fe109d5 6bd1e51 fe109d5 6bd1e51 fe109d5 cf94bdf fe109d5 b19fe5a 6bd1e51 fe109d5 6bd1e51 fe109d5 6bd1e51 fe109d5 6bd1e51 fe109d5 6bd1e51 fe109d5 6bd1e51 fe109d5 6bd1e51 fe109d5 6bd1e51 fe109d5 6bd1e51 fe109d5 6bd1e51 fe109d5 cf94bdf 6bd1e51 fe109d5 cf94bdf 6bd1e51 fe109d5 6bd1e51 fe109d5 6bd1e51 fe109d5 6bd1e51 fe109d5 6bd1e51 fe109d5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 |
import gradio as gr
from transformers import pipeline, MarianTokenizer, AutoModelForSeq2SeqLM
import torch
import tempfile
import os
import whisper
import fitz # PyMuPDF
import docx
from bs4 import BeautifulSoup
import markdown2
import chardet
import re
# Device setup
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# Global model holders
translator = None
whisper_model = None
# Model configurations
MODELS = {
("English", "Wolof"): {"model_name": "LocaleNLP/localenlp-eng-wol-0.03", "tag": ">>wol<<"},
("Wolof", "English"): {"model_name": "LocaleNLP/localenlp-wol-eng-0.03", "tag": ">>eng<<"},
("English", "Hausa"): {"model_name": "LocaleNLP/localenlp-eng-hau-0.01", "tag": ">>hau<<"},
("Hausa", "English"): {"model_name": "LocaleNLP/localenlp-hau-eng-0.01", "tag": ">>eng<<"},
("English", "Darija"): {"model_name": "LocaleNLP/english_darija", "tag": ">>dar<<"},
}
HF_TOKEN = os.getenv("hffff")
def load_model(input_lang, output_lang):
global translator
key = (input_lang, output_lang)
if key not in MODELS:
raise ValueError("Language pair not supported.")
cfg = MODELS[key]
if translator is None or translator.model.config._name_or_path != cfg["model_name"]:
model = AutoModelForSeq2SeqLM.from_pretrained(cfg["model_name"], token=HF_TOKEN).to(device)
tokenizer = MarianTokenizer.from_pretrained(cfg["model_name"], token=HF_TOKEN)
translator = pipeline("translation", model=model, tokenizer=tokenizer, device=0 if device.type=='cuda' else -1)
return translator, cfg["tag"]
def load_whisper_model():
global whisper_model
if whisper_model is None:
whisper_model = whisper.load_model("base")
return whisper_model
def transcribe_audio(audio_file):
model = load_whisper_model()
if isinstance(audio_file, str):
audio_path = audio_file
else:
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp:
tmp.write(audio_file.read())
audio_path = tmp.name
result = model.transcribe(audio_path)
if not isinstance(audio_file, str):
os.remove(audio_path)
return result["text"]
def extract_text_from_file(uploaded_file):
if isinstance(uploaded_file, str):
file_path = uploaded_file
file_type = file_path.split('.')[-1].lower()
with open(file_path, "rb") as f:
content = f.read()
else:
file_type = uploaded_file.name.split('.')[-1].lower()
content = uploaded_file.read()
if file_type == "pdf":
with fitz.open(stream=content, filetype="pdf") as doc:
return "\n".join([page.get_text() for page in doc])
elif file_type == "docx":
doc = docx.Document(file_path if isinstance(uploaded_file, str) else uploaded_file)
return "\n".join([para.text for para in doc.paragraphs])
else:
encoding = chardet.detect(content)['encoding']
content = content.decode(encoding, errors='ignore') if encoding else content
if file_type in ("html", "htm"):
return BeautifulSoup(content, "html.parser").get_text()
elif file_type == "md":
html = markdown2.markdown(content)
return BeautifulSoup(html, "html.parser").get_text()
elif file_type == "srt":
return re.sub(r"\d+\n\d{2}:\d{2}:\d{2},\d{3} --> .*?\n", "", content)
elif file_type in ("txt", "text"):
return content
else:
raise ValueError("Unsupported file type")
def translate_text(text, input_lang, output_lang):
translator, tag = load_model(input_lang, output_lang)
paragraphs = text.split("\n")
translated_output = []
with torch.no_grad():
for para in paragraphs:
if not para.strip():
translated_output.append("")
continue
sentences = [s.strip() for s in para.split('. ') if s.strip()]
formatted = [f"{tag} {s}" for s in sentences]
results = translator(formatted,
max_length=5000,
num_beams=5,
early_stopping=True,
no_repeat_ngram_size=3,
repetition_penalty=1.5,
length_penalty=1.2)
translated_sentences = [r['translation_text'].capitalize() for r in results]
translated_output.append('. '.join(translated_sentences))
return "\n".join(translated_output)
def process_input(input_mode, input_lang, text, audio_file, file_obj):
if input_mode == "Audio" and input_lang != "English":
raise ValueError("Audio input must be in English.")
if input_mode == "Text":
return text
elif input_mode == "Audio" and audio_file is not None:
return transcribe_audio(audio_file)
elif input_mode == "File" and file_obj is not None:
return extract_text_from_file(file_obj)
return ""
# Gradio UI
with gr.Blocks() as demo:
gr.Markdown("## LocaleNLP Multi-language Translator")
gr.Markdown("Translate between English, Wolof, and Hausa. Now, audio input only accepts English.")
with gr.Row():
input_mode = gr.Radio(choices=["Text", "Audio", "File"], label="Input type", value="Text")
input_lang = gr.Dropdown(choices=["English", "Wolof", "Hausa"], label="Input language", value="English")
output_lang = gr.Dropdown(choices=["English", "Wolof", "Hausa","Darija"], label="Output language", value="Wolof")
input_text = gr.Textbox(label="Enter text", lines=10, visible=True)
audio_input = gr.Audio(label="Upload audio (.wav, .mp3, .m4a)", type="filepath", visible=False)
file_input = gr.File(file_types=['.pdf', '.docx', '.html', '.htm', '.md', '.srt', '.txt'], label="Upload document", visible=False)
extracted_text = gr.Textbox(label="Extracted / Transcribed Text", lines=10, interactive=False)
translate_button = gr.Button("Translate")
output_text = gr.Textbox(label="Translated Text", lines=10, interactive=False)
def update_visibility(mode):
return {
input_text: gr.update(visible=(mode=="Text")),
audio_input: gr.update(visible=(mode=="Audio")),
file_input: gr.update(visible=(mode=="File")),
extracted_text: gr.update(value="", visible=True),
output_text: gr.update(value="")
}
input_mode.change(fn=update_visibility, inputs=input_mode, outputs=[input_text, audio_input, file_input, extracted_text, output_text])
def handle_process(mode, lang_in, text, audio, file_obj):
try:
extracted = process_input(mode, lang_in, text, audio, file_obj)
return extracted, ""
except Exception as e:
return "", f"Error: {str(e)}"
translate_button.click(fn=handle_process, inputs=[input_mode, input_lang, input_text, audio_input, file_input], outputs=[extracted_text, output_text])
def handle_translate(text, lang_in, lang_out):
if not text.strip():
return "No input text to translate."
return translate_text(text, lang_in, lang_out)
translate_button.click(fn=handle_translate, inputs=[extracted_text, input_lang, output_lang], outputs=output_text)
demo.launch()
|