File size: 7,322 Bytes
6bd1e51
 
 
 
 
fe109d5
6bd1e51
 
 
 
 
fe109d5
6bd1e51
 
 
 
fe109d5
6bd1e51
 
 
fe109d5
 
 
 
 
 
cf94bdf
fe109d5
 
b19fe5a
6bd1e51
fe109d5
 
 
 
 
 
 
 
 
 
 
6bd1e51
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fe109d5
6bd1e51
 
 
fe109d5
6bd1e51
fe109d5
6bd1e51
 
fe109d5
6bd1e51
 
 
 
 
 
 
fe109d5
 
6bd1e51
 
 
 
 
 
 
 
 
fe109d5
 
6bd1e51
 
 
 
 
 
 
 
 
 
fe109d5
 
 
6bd1e51
fe109d5
 
 
 
 
 
 
 
6bd1e51
fe109d5
cf94bdf
6bd1e51
 
fe109d5
 
cf94bdf
6bd1e51
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fe109d5
6bd1e51
fe109d5
6bd1e51
 
 
fe109d5
6bd1e51
fe109d5
 
 
 
6bd1e51
 
fe109d5
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
import gradio as gr
from transformers import pipeline, MarianTokenizer, AutoModelForSeq2SeqLM
import torch
import tempfile
import os
import whisper
import fitz  # PyMuPDF
import docx
from bs4 import BeautifulSoup
import markdown2
import chardet
import re

# Device setup
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

# Global model holders
translator = None
whisper_model = None

# Model configurations
MODELS = {
    ("English", "Wolof"): {"model_name": "LocaleNLP/localenlp-eng-wol-0.03", "tag": ">>wol<<"},
    ("Wolof", "English"): {"model_name": "LocaleNLP/localenlp-wol-eng-0.03", "tag": ">>eng<<"},
    ("English", "Hausa"): {"model_name": "LocaleNLP/localenlp-eng-hau-0.01", "tag": ">>hau<<"},
    ("Hausa", "English"): {"model_name": "LocaleNLP/localenlp-hau-eng-0.01", "tag": ">>eng<<"},
    ("English", "Darija"): {"model_name": "LocaleNLP/english_darija", "tag": ">>dar<<"},
}

HF_TOKEN = os.getenv("hffff")

def load_model(input_lang, output_lang):
    global translator
    key = (input_lang, output_lang)
    if key not in MODELS:
        raise ValueError("Language pair not supported.")
    cfg = MODELS[key]
    if translator is None or translator.model.config._name_or_path != cfg["model_name"]:
        model = AutoModelForSeq2SeqLM.from_pretrained(cfg["model_name"], token=HF_TOKEN).to(device)
        tokenizer = MarianTokenizer.from_pretrained(cfg["model_name"], token=HF_TOKEN)
        translator = pipeline("translation", model=model, tokenizer=tokenizer, device=0 if device.type=='cuda' else -1)
    return translator, cfg["tag"]

def load_whisper_model():
    global whisper_model
    if whisper_model is None:
        whisper_model = whisper.load_model("base")
    return whisper_model

def transcribe_audio(audio_file):
    model = load_whisper_model()
    if isinstance(audio_file, str):
        audio_path = audio_file
    else:
        with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp:
            tmp.write(audio_file.read())
            audio_path = tmp.name
    result = model.transcribe(audio_path)
    if not isinstance(audio_file, str):
        os.remove(audio_path)
    return result["text"]

def extract_text_from_file(uploaded_file):
    if isinstance(uploaded_file, str):
        file_path = uploaded_file
        file_type = file_path.split('.')[-1].lower()
        with open(file_path, "rb") as f:
            content = f.read()
    else:
        file_type = uploaded_file.name.split('.')[-1].lower()
        content = uploaded_file.read()

    if file_type == "pdf":
        with fitz.open(stream=content, filetype="pdf") as doc:
            return "\n".join([page.get_text() for page in doc])
    elif file_type == "docx":
        doc = docx.Document(file_path if isinstance(uploaded_file, str) else uploaded_file)
        return "\n".join([para.text for para in doc.paragraphs])
    else:
        encoding = chardet.detect(content)['encoding']
        content = content.decode(encoding, errors='ignore') if encoding else content
        if file_type in ("html", "htm"):
            return BeautifulSoup(content, "html.parser").get_text()
        elif file_type == "md":
            html = markdown2.markdown(content)
            return BeautifulSoup(html, "html.parser").get_text()
        elif file_type == "srt":
            return re.sub(r"\d+\n\d{2}:\d{2}:\d{2},\d{3} --> .*?\n", "", content)
        elif file_type in ("txt", "text"):
            return content
        else:
            raise ValueError("Unsupported file type")

def translate_text(text, input_lang, output_lang):
    translator, tag = load_model(input_lang, output_lang)
    paragraphs = text.split("\n")
    translated_output = []

    with torch.no_grad():
        for para in paragraphs:
            if not para.strip():
                translated_output.append("")
                continue
            sentences = [s.strip() for s in para.split('. ') if s.strip()]
            formatted = [f"{tag} {s}" for s in sentences]
            results = translator(formatted,
                                 max_length=5000,
                                 num_beams=5,
                                 early_stopping=True,
                                 no_repeat_ngram_size=3,
                                 repetition_penalty=1.5,
                                 length_penalty=1.2)
            translated_sentences = [r['translation_text'].capitalize() for r in results]
            translated_output.append('. '.join(translated_sentences))
    return "\n".join(translated_output)

def process_input(input_mode, input_lang, text, audio_file, file_obj):
    if input_mode == "Audio" and input_lang != "English":
        raise ValueError("Audio input must be in English.")
    if input_mode == "Text":
        return text
    elif input_mode == "Audio" and audio_file is not None:
        return transcribe_audio(audio_file)
    elif input_mode == "File" and file_obj is not None:
        return extract_text_from_file(file_obj)
    return ""

# Gradio UI
with gr.Blocks() as demo:
    gr.Markdown("## LocaleNLP Multi-language Translator")
    gr.Markdown("Translate between English, Wolof, and Hausa. Now, audio input only accepts English.")

    with gr.Row():
        input_mode = gr.Radio(choices=["Text", "Audio", "File"], label="Input type", value="Text")
        input_lang = gr.Dropdown(choices=["English", "Wolof", "Hausa"], label="Input language", value="English")
        output_lang = gr.Dropdown(choices=["English", "Wolof", "Hausa","Darija"], label="Output language", value="Wolof")

    input_text = gr.Textbox(label="Enter text", lines=10, visible=True)
    audio_input = gr.Audio(label="Upload audio (.wav, .mp3, .m4a)", type="filepath", visible=False)
    file_input = gr.File(file_types=['.pdf', '.docx', '.html', '.htm', '.md', '.srt', '.txt'], label="Upload document", visible=False)

    extracted_text = gr.Textbox(label="Extracted / Transcribed Text", lines=10, interactive=False)
    translate_button = gr.Button("Translate")
    output_text = gr.Textbox(label="Translated Text", lines=10, interactive=False)

    def update_visibility(mode):
        return {
            input_text: gr.update(visible=(mode=="Text")),
            audio_input: gr.update(visible=(mode=="Audio")),
            file_input: gr.update(visible=(mode=="File")),
            extracted_text: gr.update(value="", visible=True),
            output_text: gr.update(value="")
        }
    input_mode.change(fn=update_visibility, inputs=input_mode, outputs=[input_text, audio_input, file_input, extracted_text, output_text])

    def handle_process(mode, lang_in, text, audio, file_obj):
        try:
            extracted = process_input(mode, lang_in, text, audio, file_obj)
            return extracted, ""
        except Exception as e:
            return "", f"Error: {str(e)}"
    translate_button.click(fn=handle_process, inputs=[input_mode, input_lang, input_text, audio_input, file_input], outputs=[extracted_text, output_text])

    def handle_translate(text, lang_in, lang_out):
        if not text.strip():
            return "No input text to translate."
        return translate_text(text, lang_in, lang_out)
    translate_button.click(fn=handle_translate, inputs=[extracted_text, input_lang, output_lang], outputs=output_text)

demo.launch()