Mgolo's picture
Create app.py
6bd1e51 verified
raw
history blame
8.27 kB
import gradio as gr
from transformers import pipeline, MarianTokenizer, AutoModelForSeq2SeqLM
import torch
import unicodedata
import re
import whisper
import tempfile
import os
import nltk
nltk.download('punkt')
from nltk.tokenize import sent_tokenize
import fitz # PyMuPDF
import docx
from bs4 import BeautifulSoup
import markdown2
import chardet
# Device setup
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# Model configuration
MODELS = {
"english_wolof": {
"model_name": "LocaleNLP/localenlp-eng-wol-0.03",
"target_tag": ">>wol<<"
},
"wolof_english": {
"model_name": "LocaleNLP/localenlp-wol-eng-0.03",
"target_tag": ">>eng<<"
},
"english_hausa": {
"model_name": "LocaleNLP/localenlp-eng-hau-0.01",
"target_tag": ">>hau<<"
},
"hausa_english": {
"model_name": "LocaleNLP/localenlp-hau-eng-0.01",
"target_tag": ">>eng<<"
}
}
# Global variables
translator = None
current_model = None
whisper_model = None
HF_TOKEN = os.getenv("HF_TOKEN")
def load_translation_model(input_lang, output_lang):
global translator, current_model
model_key = f"{input_lang.lower()}_{output_lang.lower()}"
if model_key not in MODELS:
raise ValueError(f"Translation from {input_lang} to {output_lang} is not supported")
if current_model != model_key or translator is None:
model_config = MODELS[model_key]
model = AutoModelForSeq2SeqLM.from_pretrained(model_config["model_name"], token=HF_TOKEN).to(device)
tokenizer = MarianTokenizer.from_pretrained(model_config["model_name"], token=HF_TOKEN)
translator = {
"pipeline": pipeline("translation", model=model, tokenizer=tokenizer,
device=0 if device.type == 'cuda' else -1),
"target_tag": model_config["target_tag"]
}
current_model = model_key
return translator
def load_whisper_model():
global whisper_model
if whisper_model is None:
whisper_model = whisper.load_model("base")
return whisper_model
def transcribe_audio(audio_file):
model = load_whisper_model()
if isinstance(audio_file, str):
audio_path = audio_file
else:
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp:
tmp.write(audio_file.read())
audio_path = tmp.name
result = model.transcribe(audio_path)
if not isinstance(audio_file, str):
os.remove(audio_path)
return result["text"]
def extract_text_from_file(uploaded_file):
if isinstance(uploaded_file, str):
file_path = uploaded_file
file_type = file_path.split('.')[-1].lower()
with open(file_path, "rb") as f:
content = f.read()
else:
file_type = uploaded_file.name.split('.')[-1].lower()
content = uploaded_file.read()
if file_type == "pdf":
with fitz.open(stream=content, filetype="pdf") as doc:
return "\n".join([page.get_text() for page in doc])
elif file_type == "docx":
if isinstance(uploaded_file, str):
doc = docx.Document(file_path)
else:
doc = docx.Document(uploaded_file)
return "\n".join([para.text for para in doc.paragraphs])
else:
encoding = chardet.detect(content)['encoding']
if encoding:
content = content.decode(encoding, errors='ignore')
if file_type in ("html", "htm"):
soup = BeautifulSoup(content, "html.parser")
return soup.get_text()
elif file_type == "md":
html = markdown2.markdown(content)
soup = BeautifulSoup(html, "html.parser")
return soup.get_text()
elif file_type == "srt":
return re.sub(r"\d+\n\d{2}:\d{2}:\d{2},\d{3} --> .*?\n", "", content)
elif file_type in ("txt", "text"):
return content
else:
raise ValueError("Unsupported file type")
def translate(text, input_lang, output_lang):
translator = load_translation_model(input_lang, output_lang)
lang_tag = translator["target_tag"]
translation_pipeline = translator["pipeline"]
paragraphs = text.split("\n")
translated_output = []
with torch.no_grad():
for para in paragraphs:
if not para.strip():
translated_output.append("")
continue
sentences = [s.strip() for s in para.split('. ') if s.strip()]
formatted = [f"{lang_tag} {s}" for s in sentences]
results = translation_pipeline(formatted,
max_length=5000,
num_beams=5,
early_stopping=True,
no_repeat_ngram_size=3,
repetition_penalty=1.5,
length_penalty=1.2)
translated_sentences = [r['translation_text'].capitalize() for r in results]
translated_output.append('. '.join(translated_sentences))
return "\n".join(translated_output)
def process_input(input_mode, text, audio_file, file_obj, input_lang):
input_text = ""
if input_mode == "Text":
input_text = text
elif input_mode == "Audio":
if audio_file is not None:
input_text = transcribe_audio(audio_file)
elif input_mode == "File":
if file_obj is not None:
input_text = extract_text_from_file(file_obj)
return input_text
def translate_and_return(text, input_lang, output_lang):
if not text.strip():
return "No input text to translate."
return translate(text, input_lang, output_lang)
def update_input_lang_dropdown(input_mode):
if input_mode == "Audio":
return gr.Dropdown(value="English", interactive=False)
else:
return gr.Dropdown(interactive=True)
# Gradio UI components
with gr.Blocks() as demo:
gr.Markdown("## LocaleNLP Translator")
gr.Markdown("Translate between English, Wolof, and Hausa using Localenlp models.")
with gr.Row():
input_mode = gr.Radio(choices=["Text", "Audio", "File"], label="Select input mode", value="Text")
with gr.Row():
input_lang = gr.Dropdown(choices=["English", "Wolof", "Hausa"], label="Input Language", value="English")
output_lang = gr.Dropdown(choices=["English", "Wolof", "Hausa"], label="Output Language", value="Hausa")
input_text = gr.Textbox(label="Enter text", lines=10, visible=True)
audio_input = gr.Audio(label="Upload audio (.wav, .mp3, .m4a)", type="filepath", visible=False)
file_input = gr.File(file_types=['.pdf', '.docx', '.html', '.htm', '.md', '.srt', '.txt'], label="Upload document", visible=False)
extracted_text = gr.Textbox(label="Extracted / Transcribed Text", lines=10, interactive=False)
translate_button = gr.Button("Translate")
output_text = gr.Textbox(label="Translated Text", lines=10, interactive=False)
def update_visibility(mode):
return {
input_text: gr.update(visible=(mode=="Text")),
audio_input: gr.update(visible=(mode=="Audio")),
file_input: gr.update(visible=(mode=="File")),
extracted_text: gr.update(value="", visible=True),
output_text: gr.update(value="")
}
input_mode.change(fn=update_visibility, inputs=input_mode, outputs=[input_text, audio_input, file_input, extracted_text, output_text])
input_mode.change(fn=update_input_lang_dropdown, inputs=input_mode, outputs=input_lang)
def handle_process(mode, text, audio, file_obj, in_lang):
try:
extracted = process_input(mode, text, audio, file_obj, in_lang)
return extracted, ""
except Exception as e:
return "", f"Error: {str(e)}"
translate_button.click(fn=handle_process, inputs=[input_mode, input_text, audio_input, file_input, input_lang], outputs=[extracted_text, output_text])
def handle_translate(text, in_lang, out_lang):
return translate_and_return(text, in_lang, out_lang)
translate_button.click(fn=handle_translate, inputs=[extracted_text, input_lang, output_lang], outputs=output_text)
demo.launch()