Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,9 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import os
|
| 2 |
import re
|
| 3 |
-
import tempfile
|
| 4 |
import logging
|
| 5 |
-
|
|
|
|
| 6 |
from pathlib import Path
|
|
|
|
|
|
|
| 7 |
|
| 8 |
import gradio as gr
|
| 9 |
import torch
|
|
@@ -11,256 +24,554 @@ import whisper
|
|
| 11 |
import fitz # PyMuPDF
|
| 12 |
import docx
|
| 13 |
from bs4 import BeautifulSoup
|
| 14 |
-
import
|
| 15 |
import chardet
|
| 16 |
from transformers import pipeline, MarianTokenizer, AutoModelForSeq2SeqLM
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
|
| 19 |
-
#
|
| 20 |
-
|
| 21 |
-
# -------------------------------
|
| 22 |
-
|
| 23 |
-
logging.basicConfig(level=logging.INFO)
|
| 24 |
-
logger = logging.getLogger(__name__)
|
| 25 |
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
# Language Pair Models
|
| 30 |
-
MODELS: Dict[Tuple[str, str], Dict[str, str]] = {
|
| 31 |
-
("English", "Wolof"): {"model_name": "LocaleNLP/localenlp-eng-wol-0.03", "tag": ">>wol<<"},
|
| 32 |
-
("Wolof", "English"): {"model_name": "LocaleNLP/localenlp-wol-eng-0.03", "tag": ">>eng<<"},
|
| 33 |
-
("English", "Hausa"): {"model_name": "LocaleNLP/localenlp-eng-hau-0.01", "tag": ">>hau<<"},
|
| 34 |
-
("Hausa", "English"): {"model_name": "LocaleNLP/localenlp-hau-eng-0.01", "tag": ">>eng<<"},
|
| 35 |
-
("English", "Darija"): {"model_name": "LocaleNLP/english_darija", "tag": ">>dar<<"}
|
| 36 |
-
}
|
| 37 |
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
|
|
|
|
|
|
| 41 |
|
| 42 |
-
#
|
| 43 |
-
# Model
|
| 44 |
-
#
|
| 45 |
|
| 46 |
class ModelManager:
|
| 47 |
-
"""
|
| 48 |
|
| 49 |
def __init__(self):
|
| 50 |
-
self.
|
| 51 |
-
self.
|
| 52 |
-
|
| 53 |
-
def load_translation_model(self, src_lang: str, tgt_lang: str) -> Tuple[Any, str]:
|
| 54 |
-
key = (src_lang, tgt_lang)
|
| 55 |
-
if key not in MODELS:
|
| 56 |
-
raise ValueError(f"Unsupported language pair: {src_lang} -> {tgt_lang}")
|
| 57 |
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 67 |
"translation",
|
| 68 |
model=model,
|
| 69 |
tokenizer=tokenizer,
|
| 70 |
-
device=0 if
|
| 71 |
)
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 76 |
logger.info("Loading Whisper base model...")
|
| 77 |
-
self.
|
| 78 |
-
return self.
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
# -------------------------------
|
| 84 |
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
content = Path(file_path).read_bytes()
|
| 89 |
|
| 90 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 91 |
with fitz.open(stream=content, filetype="pdf") as doc:
|
| 92 |
return "\n".join(page.get_text() for page in doc)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 93 |
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
elif ext in (".html", ".htm"):
|
| 99 |
-
return BeautifulSoup(content.decode("utf-8", errors="ignore"), "html.parser").get_text()
|
| 100 |
-
|
| 101 |
-
elif ext == ".md":
|
| 102 |
-
html = markdown2.markdown(content.decode("utf-8", errors="ignore"))
|
| 103 |
-
return BeautifulSoup(html, "html.parser").get_text()
|
| 104 |
-
|
| 105 |
-
elif ext == ".srt":
|
| 106 |
-
decoded = content.decode("utf-8", errors="ignore")
|
| 107 |
-
return re.sub(r"\d+\n\d{2}:\d{2}:\d{2},\d{3} --> .*?\n", "", decoded)
|
| 108 |
-
|
| 109 |
-
elif ext in (".txt", ".text"):
|
| 110 |
-
encoding = chardet.detect(content)["encoding"]
|
| 111 |
-
return content.decode(encoding or "utf-8", errors="ignore")
|
| 112 |
-
|
| 113 |
-
else:
|
| 114 |
-
raise ValueError(f"Unsupported file type: {ext}")
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
# -------------------------------
|
| 118 |
-
# Translation Logic
|
| 119 |
-
# -------------------------------
|
| 120 |
-
|
| 121 |
-
def translate_text(text: str, src_lang: str, tgt_lang: str, model_manager: ModelManager) -> str:
|
| 122 |
-
"""Translates input text using the specified language pair."""
|
| 123 |
-
pipe, tag = model_manager.load_translation_model(src_lang, tgt_lang)
|
| 124 |
-
paragraphs = text.splitlines()
|
| 125 |
-
translated_output = []
|
| 126 |
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 142 |
)
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
|
| 189 |
-
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
|
| 193 |
-
|
| 194 |
-
|
| 195 |
-
|
| 196 |
-
|
| 197 |
-
|
| 198 |
-
|
| 199 |
-
|
| 200 |
-
|
| 201 |
-
|
| 202 |
-
|
| 203 |
-
|
| 204 |
-
|
| 205 |
-
|
| 206 |
-
|
| 207 |
-
|
| 208 |
-
|
| 209 |
-
|
| 210 |
-
|
| 211 |
-
|
| 212 |
-
|
| 213 |
-
|
| 214 |
-
|
| 215 |
-
|
| 216 |
-
|
| 217 |
-
|
| 218 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 219 |
|
|
|
|
|
|
|
|
|
|
| 220 |
|
| 221 |
-
def
|
| 222 |
-
"""
|
| 223 |
-
if not extracted_text.strip():
|
| 224 |
-
return "No input text to translate."
|
| 225 |
try:
|
| 226 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 227 |
except Exception as e:
|
| 228 |
-
logger.
|
| 229 |
-
|
| 230 |
-
|
| 231 |
-
|
| 232 |
-
# -------------------------------
|
| 233 |
-
# Gradio Interface
|
| 234 |
-
# -------------------------------
|
| 235 |
-
|
| 236 |
-
with gr.Blocks(title="LocaleNLP Translator") as demo:
|
| 237 |
-
gr.Markdown("## 🌍 LocaleNLP Multi-language Translator")
|
| 238 |
-
gr.Markdown("Supports translation between English, Wolof, Hausa, and Darija. Audio input must be in English.")
|
| 239 |
-
|
| 240 |
-
with gr.Row():
|
| 241 |
-
input_mode = gr.Radio(choices=INPUT_MODES, label="Input Type", value="Text")
|
| 242 |
-
input_lang = gr.Dropdown(choices=SUPPORTED_LANGUAGES[:-1], label="Input Language", value="English")
|
| 243 |
-
output_lang = gr.Dropdown(choices=SUPPORTED_LANGUAGES, label="Output Language", value="Wolof")
|
| 244 |
-
|
| 245 |
-
input_text = gr.Textbox(label="Enter Text", lines=10, visible=True)
|
| 246 |
-
audio_input = gr.Audio(label="Upload Audio (.wav, .mp3, .m4a)", type="filepath", visible=False)
|
| 247 |
-
file_input = gr.File(file_types=SUPPORTED_FILE_TYPES, label="Upload Document", visible=False)
|
| 248 |
-
|
| 249 |
-
extracted_text = gr.Textbox(label="Extracted / Transcribed Text", lines=10, interactive=False)
|
| 250 |
-
translate_button = gr.Button("Translate")
|
| 251 |
-
output_text = gr.Textbox(label="Translated Text", lines=10, interactive=False)
|
| 252 |
-
|
| 253 |
-
input_mode.change(fn=update_visibility, inputs=input_mode, outputs=[input_text, audio_input, file_input, extracted_text, output_text])
|
| 254 |
-
|
| 255 |
-
translate_button.click(
|
| 256 |
-
fn=handle_process,
|
| 257 |
-
inputs=[input_mode, input_lang, input_text, audio_input, file_input],
|
| 258 |
-
outputs=[extracted_text, output_text]
|
| 259 |
-
).then(
|
| 260 |
-
fn=handle_translate,
|
| 261 |
-
inputs=[extracted_text, input_lang, output_lang],
|
| 262 |
-
outputs=output_text
|
| 263 |
-
)
|
| 264 |
|
| 265 |
if __name__ == "__main__":
|
| 266 |
-
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
LocaleNLP Translation Service
|
| 3 |
+
============================
|
| 4 |
+
|
| 5 |
+
A multi-language translation application supporting English, Wolof, Hausa, and Darija.
|
| 6 |
+
Features text, audio, and document translation with a modern web interface.
|
| 7 |
+
|
| 8 |
+
Author: LocaleNLP Team
|
| 9 |
+
Version: 1.0.0
|
| 10 |
+
"""
|
| 11 |
+
|
| 12 |
import os
|
| 13 |
import re
|
|
|
|
| 14 |
import logging
|
| 15 |
+
import tempfile
|
| 16 |
+
from typing import Optional, Dict, Tuple, Any, Union
|
| 17 |
from pathlib import Path
|
| 18 |
+
from dataclasses import dataclass
|
| 19 |
+
from enum import Enum
|
| 20 |
|
| 21 |
import gradio as gr
|
| 22 |
import torch
|
|
|
|
| 24 |
import fitz # PyMuPDF
|
| 25 |
import docx
|
| 26 |
from bs4 import BeautifulSoup
|
| 27 |
+
from markdown import markdown
|
| 28 |
import chardet
|
| 29 |
from transformers import pipeline, MarianTokenizer, AutoModelForSeq2SeqLM
|
| 30 |
+
from huggingface_hub import login
|
| 31 |
+
|
| 32 |
+
# ================================
|
| 33 |
+
# Configuration & Constants
|
| 34 |
+
# ================================
|
| 35 |
+
|
| 36 |
+
class Language(str, Enum):
|
| 37 |
+
"""Supported languages for translation."""
|
| 38 |
+
ENGLISH = "English"
|
| 39 |
+
WOLOF = "Wolof"
|
| 40 |
+
HAUSA = "Hausa"
|
| 41 |
+
DARIJA = "Darija"
|
| 42 |
+
|
| 43 |
+
class InputMode(str, Enum):
|
| 44 |
+
"""Supported input modes."""
|
| 45 |
+
TEXT = "Text"
|
| 46 |
+
AUDIO = "Audio"
|
| 47 |
+
FILE = "File"
|
| 48 |
+
|
| 49 |
+
@dataclass
|
| 50 |
+
class ModelConfig:
|
| 51 |
+
"""Configuration for translation models."""
|
| 52 |
+
model_name: str
|
| 53 |
+
language_tag: str
|
| 54 |
+
|
| 55 |
+
# Language pair configurations
|
| 56 |
+
TRANSLATION_MODELS: Dict[Tuple[Language, Language], ModelConfig] = {
|
| 57 |
+
(Language.ENGLISH, Language.WOLOF): ModelConfig(
|
| 58 |
+
"LocaleNLP/localenlp-eng-wol-0.03", ">>wol<<"
|
| 59 |
+
),
|
| 60 |
+
(Language.WOLOF, Language.ENGLISH): ModelConfig(
|
| 61 |
+
"LocaleNLP/localenlp-wol-eng-0.03", ">>eng<<"
|
| 62 |
+
),
|
| 63 |
+
(Language.ENGLISH, Language.HAUSA): ModelConfig(
|
| 64 |
+
"LocaleNLP/localenlp-eng-hau-0.01", ">>hau<<"
|
| 65 |
+
),
|
| 66 |
+
(Language.HAUSA, Language.ENGLISH): ModelConfig(
|
| 67 |
+
"LocaleNLP/localenlp-hau-eng-0.01", ">>eng<<"
|
| 68 |
+
),
|
| 69 |
+
(Language.ENGLISH, Language.DARIJA): ModelConfig(
|
| 70 |
+
"LocaleNLP/english_darija", ">>dar<<"
|
| 71 |
+
)
|
| 72 |
+
}
|
| 73 |
|
| 74 |
+
# File type support
|
| 75 |
+
SUPPORTED_FILE_TYPES = [
|
| 76 |
+
".pdf", ".docx", ".html", ".htm", ".md",
|
| 77 |
+
".srt", ".txt", ".text"
|
| 78 |
+
]
|
| 79 |
|
| 80 |
+
# Audio file extensions
|
| 81 |
+
AUDIO_EXTENSIONS = [".wav", ".mp3", ".m4a"]
|
|
|
|
|
|
|
|
|
|
|
|
|
| 82 |
|
| 83 |
+
# ================================
|
| 84 |
+
# Logging Configuration
|
| 85 |
+
# ================================
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 86 |
|
| 87 |
+
logging.basicConfig(
|
| 88 |
+
level=logging.INFO,
|
| 89 |
+
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
|
| 90 |
+
)
|
| 91 |
+
logger = logging.getLogger(__name__)
|
| 92 |
|
| 93 |
+
# ================================
|
| 94 |
+
# Model Management
|
| 95 |
+
# ================================
|
| 96 |
|
| 97 |
class ModelManager:
|
| 98 |
+
"""Centralized model management for translation and transcription."""
|
| 99 |
|
| 100 |
def __init__(self):
|
| 101 |
+
self._translation_pipeline = None
|
| 102 |
+
self._whisper_model = None
|
| 103 |
+
self._current_model_name = None
|
|
|
|
|
|
|
|
|
|
|
|
|
| 104 |
|
| 105 |
+
def get_translation_pipeline(
|
| 106 |
+
self,
|
| 107 |
+
source_lang: Language,
|
| 108 |
+
target_lang: Language
|
| 109 |
+
) -> Tuple[Any, str]:
|
| 110 |
+
"""
|
| 111 |
+
Load and return translation pipeline for given language pair.
|
| 112 |
+
|
| 113 |
+
Args:
|
| 114 |
+
source_lang: Source language
|
| 115 |
+
target_lang: Target language
|
| 116 |
+
|
| 117 |
+
Returns:
|
| 118 |
+
Tuple of (pipeline, language_tag)
|
| 119 |
+
|
| 120 |
+
Raises:
|
| 121 |
+
ValueError: If language pair is not supported
|
| 122 |
+
"""
|
| 123 |
+
key = (source_lang, target_lang)
|
| 124 |
+
if key not in TRANSLATION_MODELS:
|
| 125 |
+
raise ValueError(f"Unsupported translation pair: {source_lang} -> {target_lang}")
|
| 126 |
+
|
| 127 |
+
config = TRANSLATION_MODELS[key]
|
| 128 |
+
|
| 129 |
+
# Load model if not loaded or different model needed
|
| 130 |
+
if (self._translation_pipeline is None or
|
| 131 |
+
self._current_model_name != config.model_name):
|
| 132 |
+
|
| 133 |
+
logger.info(f"Loading translation model: {config.model_name}")
|
| 134 |
+
|
| 135 |
+
# Authenticate with Hugging Face if token provided
|
| 136 |
+
if hf_token := os.getenv("hffff"):
|
| 137 |
+
login(token=hf_token)
|
| 138 |
+
|
| 139 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(
|
| 140 |
+
config.model_name,
|
| 141 |
+
token=hf_token
|
| 142 |
+
).to(self._get_device())
|
| 143 |
+
|
| 144 |
+
tokenizer = MarianTokenizer.from_pretrained(
|
| 145 |
+
config.model_name,
|
| 146 |
+
token=hf_token
|
| 147 |
+
)
|
| 148 |
+
|
| 149 |
+
self._translation_pipeline = pipeline(
|
| 150 |
"translation",
|
| 151 |
model=model,
|
| 152 |
tokenizer=tokenizer,
|
| 153 |
+
device=0 if self._get_device().type == "cuda" else -1
|
| 154 |
)
|
| 155 |
+
|
| 156 |
+
self._current_model_name = config.model_name
|
| 157 |
+
|
| 158 |
+
return self._translation_pipeline, config.language_tag
|
| 159 |
+
|
| 160 |
+
def get_whisper_model(self) -> Any:
|
| 161 |
+
"""
|
| 162 |
+
Load and return Whisper transcription model.
|
| 163 |
+
|
| 164 |
+
Returns:
|
| 165 |
+
Whisper model instance
|
| 166 |
+
"""
|
| 167 |
+
if self._whisper_model is None:
|
| 168 |
logger.info("Loading Whisper base model...")
|
| 169 |
+
self._whisper_model = whisper.load_model("base")
|
| 170 |
+
return self._whisper_model
|
| 171 |
+
|
| 172 |
+
def _get_device(self) -> torch.device:
|
| 173 |
+
"""Get appropriate device for model execution."""
|
| 174 |
+
return torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
|
|
| 175 |
|
| 176 |
+
# ================================
|
| 177 |
+
# Content Processing
|
| 178 |
+
# ================================
|
|
|
|
| 179 |
|
| 180 |
+
class ContentProcessor:
|
| 181 |
+
"""Handles extraction and processing of content from various sources."""
|
| 182 |
+
|
| 183 |
+
@staticmethod
|
| 184 |
+
def extract_text_from_file(file_path: Union[str, Path]) -> str:
|
| 185 |
+
"""
|
| 186 |
+
Extract text content from various file formats.
|
| 187 |
+
|
| 188 |
+
Args:
|
| 189 |
+
file_path: Path to the file
|
| 190 |
+
|
| 191 |
+
Returns:
|
| 192 |
+
Extracted text content
|
| 193 |
+
|
| 194 |
+
Raises:
|
| 195 |
+
ValueError: If file type is unsupported
|
| 196 |
+
Exception: If file processing fails
|
| 197 |
+
"""
|
| 198 |
+
file_path = Path(file_path)
|
| 199 |
+
extension = file_path.suffix.lower()
|
| 200 |
+
|
| 201 |
+
try:
|
| 202 |
+
content = file_path.read_bytes()
|
| 203 |
+
|
| 204 |
+
if extension == ".pdf":
|
| 205 |
+
return ContentProcessor._extract_pdf_text(content)
|
| 206 |
+
elif extension == ".docx":
|
| 207 |
+
return ContentProcessor._extract_docx_text(file_path)
|
| 208 |
+
elif extension in (".html", ".htm"):
|
| 209 |
+
return ContentProcessor._extract_html_text(content)
|
| 210 |
+
elif extension == ".md":
|
| 211 |
+
return ContentProcessor._extract_markdown_text(content)
|
| 212 |
+
elif extension == ".srt":
|
| 213 |
+
return ContentProcessor._extract_srt_text(content)
|
| 214 |
+
elif extension in (".txt", ".text"):
|
| 215 |
+
return ContentProcessor._extract_plain_text(content)
|
| 216 |
+
else:
|
| 217 |
+
raise ValueError(f"Unsupported file type: {extension}")
|
| 218 |
+
|
| 219 |
+
except Exception as e:
|
| 220 |
+
logger.error(f"Failed to extract text from {file_path}: {e}")
|
| 221 |
+
raise
|
| 222 |
+
|
| 223 |
+
@staticmethod
|
| 224 |
+
def _extract_pdf_text(content: bytes) -> str:
|
| 225 |
+
"""Extract text from PDF file."""
|
| 226 |
with fitz.open(stream=content, filetype="pdf") as doc:
|
| 227 |
return "\n".join(page.get_text() for page in doc)
|
| 228 |
+
|
| 229 |
+
@staticmethod
|
| 230 |
+
def _extract_docx_text(file_path: Path) -> str:
|
| 231 |
+
"""Extract text from DOCX file."""
|
| 232 |
+
doc = docx.Document(str(file_path))
|
| 233 |
+
return "\n".join(paragraph.text for paragraph in doc.paragraphs)
|
| 234 |
+
|
| 235 |
+
@staticmethod
|
| 236 |
+
def _extract_html_text(content: bytes) -> str:
|
| 237 |
+
"""Extract text from HTML file."""
|
| 238 |
+
encoding = chardet.detect(content)["encoding"] or "utf-8"
|
| 239 |
+
text = content.decode(encoding, errors="ignore")
|
| 240 |
+
soup = BeautifulSoup(text, "html.parser")
|
| 241 |
+
return soup.get_text()
|
| 242 |
+
|
| 243 |
+
@staticmethod
|
| 244 |
+
def _extract_markdown_text(content: bytes) -> str:
|
| 245 |
+
"""Extract text from Markdown file."""
|
| 246 |
+
encoding = chardet.detect(content)["encoding"] or "utf-8"
|
| 247 |
+
text = content.decode(encoding, errors="ignore")
|
| 248 |
+
html = markdown(text)
|
| 249 |
+
soup = BeautifulSoup(html, "html.parser")
|
| 250 |
+
return soup.get_text()
|
| 251 |
+
|
| 252 |
+
@staticmethod
|
| 253 |
+
def _extract_srt_text(content: bytes) -> str:
|
| 254 |
+
"""Extract text from SRT subtitle file."""
|
| 255 |
+
encoding = chardet.detect(content)["encoding"] or "utf-8"
|
| 256 |
+
text = content.decode(encoding, errors="ignore")
|
| 257 |
+
# Remove timestamp lines
|
| 258 |
+
return re.sub(r"\d+\n\d{2}:\d{2}:\d{2},\d{3} --> .*?\n", "", text)
|
| 259 |
+
|
| 260 |
+
@staticmethod
|
| 261 |
+
def _extract_plain_text(content: bytes) -> str:
|
| 262 |
+
"""Extract text from plain text file."""
|
| 263 |
+
encoding = chardet.detect(content)["encoding"] or "utf-8"
|
| 264 |
+
return content.decode(encoding, errors="ignore")
|
| 265 |
+
|
| 266 |
+
# ================================
|
| 267 |
+
# Translation Service
|
| 268 |
+
# ================================
|
| 269 |
+
|
| 270 |
+
class TranslationService:
|
| 271 |
+
"""Core translation service with advanced processing capabilities."""
|
| 272 |
+
|
| 273 |
+
def __init__(self, model_manager: ModelManager):
|
| 274 |
+
self.model_manager = model_manager
|
| 275 |
+
|
| 276 |
+
def translate(
|
| 277 |
+
self,
|
| 278 |
+
text: str,
|
| 279 |
+
source_lang: Language,
|
| 280 |
+
target_lang: Language
|
| 281 |
+
) -> str:
|
| 282 |
+
"""
|
| 283 |
+
Translate text from source to target language.
|
| 284 |
+
|
| 285 |
+
Args:
|
| 286 |
+
text: Input text to translate
|
| 287 |
+
source_lang: Source language
|
| 288 |
+
target_lang: Target language
|
| 289 |
+
|
| 290 |
+
Returns:
|
| 291 |
+
Translated text
|
| 292 |
+
"""
|
| 293 |
+
if not text.strip():
|
| 294 |
+
return "No input text to translate."
|
| 295 |
+
|
| 296 |
+
pipeline_obj, lang_tag = self.model_manager.get_translation_pipeline(
|
| 297 |
+
source_lang, target_lang
|
| 298 |
+
)
|
| 299 |
+
|
| 300 |
+
# Process text in paragraphs
|
| 301 |
+
paragraphs = text.splitlines()
|
| 302 |
+
translated_paragraphs = []
|
| 303 |
+
|
| 304 |
+
with torch.no_grad():
|
| 305 |
+
for paragraph in paragraphs:
|
| 306 |
+
if not paragraph.strip():
|
| 307 |
+
translated_paragraphs.append("")
|
| 308 |
+
continue
|
| 309 |
+
|
| 310 |
+
# Split into sentences and translate
|
| 311 |
+
sentences = [
|
| 312 |
+
s.strip() for s in paragraph.split(". ")
|
| 313 |
+
if s.strip()
|
| 314 |
+
]
|
| 315 |
+
|
| 316 |
+
# Add language tag to each sentence
|
| 317 |
+
formatted_sentences = [
|
| 318 |
+
f"{lang_tag} {sentence}"
|
| 319 |
+
for sentence in sentences
|
| 320 |
+
]
|
| 321 |
+
|
| 322 |
+
# Perform translation
|
| 323 |
+
results = pipeline_obj(
|
| 324 |
+
formatted_sentences,
|
| 325 |
+
max_length=5000,
|
| 326 |
+
num_beams=5,
|
| 327 |
+
early_stopping=True,
|
| 328 |
+
no_repeat_ngram_size=3,
|
| 329 |
+
repetition_penalty=1.5,
|
| 330 |
+
length_penalty=1.2
|
| 331 |
+
)
|
| 332 |
+
|
| 333 |
+
# Process results
|
| 334 |
+
translated_sentences = [
|
| 335 |
+
result["translation_text"].capitalize()
|
| 336 |
+
for result in results
|
| 337 |
+
]
|
| 338 |
+
|
| 339 |
+
translated_paragraphs.append(". ".join(translated_sentences))
|
| 340 |
+
|
| 341 |
+
return "\n".join(translated_paragraphs)
|
| 342 |
|
| 343 |
+
# ================================
|
| 344 |
+
# Audio Processing
|
| 345 |
+
# ================================
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 346 |
|
| 347 |
+
class AudioProcessor:
|
| 348 |
+
"""Handles audio file transcription using Whisper."""
|
| 349 |
+
|
| 350 |
+
def __init__(self, model_manager: ModelManager):
|
| 351 |
+
self.model_manager = model_manager
|
| 352 |
+
|
| 353 |
+
def transcribe(self, audio_file_path: str) -> str:
|
| 354 |
+
"""
|
| 355 |
+
Transcribe audio file to text.
|
| 356 |
+
|
| 357 |
+
Args:
|
| 358 |
+
audio_file_path: Path to audio file
|
| 359 |
+
|
| 360 |
+
Returns:
|
| 361 |
+
Transcribed text
|
| 362 |
+
"""
|
| 363 |
+
model = self.model_manager.get_whisper_model()
|
| 364 |
+
result = model.transcribe(audio_file_path)
|
| 365 |
+
return result["text"]
|
| 366 |
+
|
| 367 |
+
# ================================
|
| 368 |
+
# Main Application
|
| 369 |
+
# ================================
|
| 370 |
+
|
| 371 |
+
class TranslationApp:
|
| 372 |
+
"""Main application orchestrating all components."""
|
| 373 |
+
|
| 374 |
+
def __init__(self):
|
| 375 |
+
self.model_manager = ModelManager()
|
| 376 |
+
self.content_processor = ContentProcessor()
|
| 377 |
+
self.translation_service = TranslationService(self.model_manager)
|
| 378 |
+
self.audio_processor = AudioProcessor(self.model_manager)
|
| 379 |
+
|
| 380 |
+
def process_input(
|
| 381 |
+
self,
|
| 382 |
+
mode: InputMode,
|
| 383 |
+
source_lang: Language,
|
| 384 |
+
text_input: str,
|
| 385 |
+
audio_file: Optional[str],
|
| 386 |
+
file_obj: Optional[gr.FileData]
|
| 387 |
+
) -> str:
|
| 388 |
+
"""
|
| 389 |
+
Process input based on selected mode.
|
| 390 |
+
|
| 391 |
+
Args:
|
| 392 |
+
mode: Input mode
|
| 393 |
+
source_lang: Source language
|
| 394 |
+
text_input: Text input
|
| 395 |
+
audio_file: Audio file path
|
| 396 |
+
file_obj: Uploaded file object
|
| 397 |
+
|
| 398 |
+
Returns:
|
| 399 |
+
Processed text content
|
| 400 |
+
"""
|
| 401 |
+
if mode == InputMode.TEXT:
|
| 402 |
+
return text_input
|
| 403 |
+
|
| 404 |
+
elif mode == InputMode.AUDIO:
|
| 405 |
+
if source_lang != Language.ENGLISH:
|
| 406 |
+
raise ValueError("Audio input must be in English.")
|
| 407 |
+
if not audio_file:
|
| 408 |
+
raise ValueError("No audio file provided.")
|
| 409 |
+
return self.audio_processor.transcribe(audio_file)
|
| 410 |
+
|
| 411 |
+
elif mode == InputMode.FILE:
|
| 412 |
+
if not file_obj:
|
| 413 |
+
raise ValueError("No file uploaded.")
|
| 414 |
+
return self.content_processor.extract_text_from_file(file_obj.name)
|
| 415 |
+
|
| 416 |
+
return ""
|
| 417 |
+
|
| 418 |
+
def create_interface(self) -> gr.Blocks:
|
| 419 |
+
"""Create and return the Gradio interface."""
|
| 420 |
+
|
| 421 |
+
with gr.Blocks(
|
| 422 |
+
title="LocaleNLP Translation Service",
|
| 423 |
+
theme=gr.themes.Soft()
|
| 424 |
+
) as interface:
|
| 425 |
+
# Header
|
| 426 |
+
gr.Markdown("""
|
| 427 |
+
# 🌍 LocaleNLP Translation Service
|
| 428 |
+
Translate between English, Wolof, Hausa, and Darija with support for text, audio, and documents.
|
| 429 |
+
""")
|
| 430 |
+
|
| 431 |
+
# Input controls
|
| 432 |
+
with gr.Row():
|
| 433 |
+
input_mode = gr.Radio(
|
| 434 |
+
choices=[mode.value for mode in InputMode],
|
| 435 |
+
label="Input Type",
|
| 436 |
+
value=InputMode.TEXT.value
|
| 437 |
+
)
|
| 438 |
+
|
| 439 |
+
input_lang = gr.Dropdown(
|
| 440 |
+
choices=[lang.value for lang in Language if lang != Language.DARIJA],
|
| 441 |
+
label="Input Language",
|
| 442 |
+
value=Language.ENGLISH.value
|
| 443 |
+
)
|
| 444 |
+
|
| 445 |
+
output_lang = gr.Dropdown(
|
| 446 |
+
choices=[lang.value for lang in Language],
|
| 447 |
+
label="Output Language",
|
| 448 |
+
value=Language.WOLOF.value
|
| 449 |
+
)
|
| 450 |
+
|
| 451 |
+
# Input components
|
| 452 |
+
input_text = gr.Textbox(
|
| 453 |
+
label="Enter Text",
|
| 454 |
+
lines=8,
|
| 455 |
+
visible=True,
|
| 456 |
+
placeholder="Type or paste your text here..."
|
| 457 |
)
|
| 458 |
+
|
| 459 |
+
audio_input = gr.Audio(
|
| 460 |
+
label="Upload Audio",
|
| 461 |
+
type="filepath",
|
| 462 |
+
visible=False
|
| 463 |
+
)
|
| 464 |
+
|
| 465 |
+
file_input = gr.File(
|
| 466 |
+
file_types=SUPPORTED_FILE_TYPES,
|
| 467 |
+
label="Upload Document",
|
| 468 |
+
visible=False
|
| 469 |
+
)
|
| 470 |
+
|
| 471 |
+
# Processing area
|
| 472 |
+
extracted_text = gr.Textbox(
|
| 473 |
+
label="Extracted / Transcribed Text",
|
| 474 |
+
lines=8,
|
| 475 |
+
interactive=False
|
| 476 |
+
)
|
| 477 |
+
|
| 478 |
+
translate_btn = gr.Button(
|
| 479 |
+
"🔄 Process & Translate",
|
| 480 |
+
variant="primary"
|
| 481 |
+
)
|
| 482 |
+
|
| 483 |
+
output_text = gr.Textbox(
|
| 484 |
+
label="Translated Text",
|
| 485 |
+
lines=8,
|
| 486 |
+
interactive=False
|
| 487 |
+
)
|
| 488 |
+
|
| 489 |
+
# Event handlers
|
| 490 |
+
def update_visibility(mode: str) -> Dict[str, Any]:
|
| 491 |
+
"""Update component visibility based on input mode."""
|
| 492 |
+
return {
|
| 493 |
+
input_text: gr.update(visible=(mode == InputMode.TEXT.value)),
|
| 494 |
+
audio_input: gr.update(visible=(mode == InputMode.AUDIO.value)),
|
| 495 |
+
file_input: gr.update(visible=(mode == InputMode.FILE.value)),
|
| 496 |
+
extracted_text: gr.update(value="", visible=True),
|
| 497 |
+
output_text: gr.update(value="")
|
| 498 |
+
}
|
| 499 |
+
|
| 500 |
+
def handle_process(
|
| 501 |
+
mode: str,
|
| 502 |
+
source_lang: str,
|
| 503 |
+
text_input: str,
|
| 504 |
+
audio_file: Optional[str],
|
| 505 |
+
file_obj: Optional[gr.FileData]
|
| 506 |
+
) -> Tuple[str, str]:
|
| 507 |
+
"""Handle initial input processing."""
|
| 508 |
+
try:
|
| 509 |
+
processed_text = self.process_input(
|
| 510 |
+
InputMode(mode),
|
| 511 |
+
Language(source_lang),
|
| 512 |
+
text_input,
|
| 513 |
+
audio_file,
|
| 514 |
+
file_obj
|
| 515 |
+
)
|
| 516 |
+
return processed_text, ""
|
| 517 |
+
except Exception as e:
|
| 518 |
+
logger.error(f"Processing error: {e}")
|
| 519 |
+
return "", f"❌ Error: {str(e)}"
|
| 520 |
+
|
| 521 |
+
def handle_translate(
|
| 522 |
+
extracted_text: str,
|
| 523 |
+
source_lang: str,
|
| 524 |
+
target_lang: str
|
| 525 |
+
) -> str:
|
| 526 |
+
"""Handle translation of processed text."""
|
| 527 |
+
if not extracted_text.strip():
|
| 528 |
+
return "📝 No text to translate."
|
| 529 |
+
try:
|
| 530 |
+
return self.translation_service.translate(
|
| 531 |
+
extracted_text,
|
| 532 |
+
Language(source_lang),
|
| 533 |
+
Language(target_lang)
|
| 534 |
+
)
|
| 535 |
+
except Exception as e:
|
| 536 |
+
logger.error(f"Translation error: {e}")
|
| 537 |
+
return f"❌ Translation error: {str(e)}"
|
| 538 |
+
|
| 539 |
+
# Connect events
|
| 540 |
+
input_mode.change(
|
| 541 |
+
fn=update_visibility,
|
| 542 |
+
inputs=input_mode,
|
| 543 |
+
outputs=[input_text, audio_input, file_input, extracted_text, output_text]
|
| 544 |
+
)
|
| 545 |
+
|
| 546 |
+
translate_btn.click(
|
| 547 |
+
fn=handle_process,
|
| 548 |
+
inputs=[input_mode, input_lang, input_text, audio_input, file_input],
|
| 549 |
+
outputs=[extracted_text, output_text]
|
| 550 |
+
).then(
|
| 551 |
+
fn=handle_translate,
|
| 552 |
+
inputs=[extracted_text, input_lang, output_lang],
|
| 553 |
+
outputs=output_text
|
| 554 |
+
)
|
| 555 |
+
|
| 556 |
+
return interface
|
| 557 |
|
| 558 |
+
# ================================
|
| 559 |
+
# Application Entry Point
|
| 560 |
+
# ================================
|
| 561 |
|
| 562 |
+
def main():
|
| 563 |
+
"""Main application entry point."""
|
|
|
|
|
|
|
| 564 |
try:
|
| 565 |
+
app = TranslationApp()
|
| 566 |
+
interface = app.create_interface()
|
| 567 |
+
interface.launch(
|
| 568 |
+
server_name="0.0.0.0",
|
| 569 |
+
server_port=int(os.getenv("PORT", 7860)),
|
| 570 |
+
share=False
|
| 571 |
+
)
|
| 572 |
except Exception as e:
|
| 573 |
+
logger.critical(f"Failed to start application: {e}")
|
| 574 |
+
raise
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 575 |
|
| 576 |
if __name__ == "__main__":
|
| 577 |
+
main()
|