Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,99 +1,127 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
-
from transformers import pipeline, MarianTokenizer, AutoModelForSeq2SeqLM
|
| 3 |
import torch
|
| 4 |
-
import tempfile
|
| 5 |
-
import os
|
| 6 |
import whisper
|
| 7 |
import fitz # PyMuPDF
|
| 8 |
import docx
|
| 9 |
from bs4 import BeautifulSoup
|
| 10 |
import markdown2
|
| 11 |
import chardet
|
| 12 |
-
import
|
|
|
|
| 13 |
|
| 14 |
-
#
|
| 15 |
-
|
|
|
|
| 16 |
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
whisper_model = None
|
| 20 |
|
| 21 |
-
|
| 22 |
-
|
|
|
|
|
|
|
|
|
|
| 23 |
("English", "Wolof"): {"model_name": "LocaleNLP/localenlp-eng-wol-0.03", "tag": ">>wol<<"},
|
| 24 |
("Wolof", "English"): {"model_name": "LocaleNLP/localenlp-wol-eng-0.03", "tag": ">>eng<<"},
|
| 25 |
("English", "Hausa"): {"model_name": "LocaleNLP/localenlp-eng-hau-0.01", "tag": ">>hau<<"},
|
| 26 |
("Hausa", "English"): {"model_name": "LocaleNLP/localenlp-hau-eng-0.01", "tag": ">>eng<<"},
|
| 27 |
-
("English", "Darija"): {"model_name": "LocaleNLP/english_darija", "tag": ">>dar<<"}
|
| 28 |
}
|
| 29 |
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 62 |
|
| 63 |
-
def extract_text_from_file(uploaded_file):
|
| 64 |
-
if isinstance(uploaded_file, str):
|
| 65 |
-
file_path = uploaded_file
|
| 66 |
-
file_type = file_path.split('.')[-1].lower()
|
| 67 |
-
with open(file_path, "rb") as f:
|
| 68 |
-
content = f.read()
|
| 69 |
-
else:
|
| 70 |
-
file_type = uploaded_file.name.split('.')[-1].lower()
|
| 71 |
-
content = uploaded_file.read()
|
| 72 |
|
| 73 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 74 |
with fitz.open(stream=content, filetype="pdf") as doc:
|
| 75 |
-
return "\n".join(
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 79 |
else:
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
else:
|
| 92 |
-
raise ValueError("Unsupported file type")
|
| 93 |
-
|
| 94 |
-
def translate_text(text, input_lang, output_lang):
|
| 95 |
-
translator, tag = load_model(input_lang, output_lang)
|
| 96 |
-
paragraphs = text.split("\n")
|
| 97 |
translated_output = []
|
| 98 |
|
| 99 |
with torch.no_grad():
|
|
@@ -101,70 +129,138 @@ def translate_text(text, input_lang, output_lang):
|
|
| 101 |
if not para.strip():
|
| 102 |
translated_output.append("")
|
| 103 |
continue
|
| 104 |
-
sentences = [s.strip() for s in para.split(
|
| 105 |
-
formatted = [f"{tag} {
|
| 106 |
-
results =
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
|
|
|
|
|
|
|
|
|
| 115 |
return "\n".join(translated_output)
|
| 116 |
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 126 |
return ""
|
| 127 |
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 132 |
|
| 133 |
with gr.Row():
|
| 134 |
-
input_mode = gr.Radio(choices=
|
| 135 |
-
input_lang = gr.Dropdown(choices=[
|
| 136 |
-
output_lang = gr.Dropdown(choices=
|
| 137 |
|
| 138 |
-
input_text = gr.Textbox(label="Enter
|
| 139 |
-
audio_input = gr.Audio(label="Upload
|
| 140 |
-
file_input = gr.File(file_types=
|
| 141 |
|
| 142 |
extracted_text = gr.Textbox(label="Extracted / Transcribed Text", lines=10, interactive=False)
|
| 143 |
translate_button = gr.Button("Translate")
|
| 144 |
output_text = gr.Textbox(label="Translated Text", lines=10, interactive=False)
|
| 145 |
|
| 146 |
-
def update_visibility(mode):
|
| 147 |
-
return {
|
| 148 |
-
input_text: gr.update(visible=(mode=="Text")),
|
| 149 |
-
audio_input: gr.update(visible=(mode=="Audio")),
|
| 150 |
-
file_input: gr.update(visible=(mode=="File")),
|
| 151 |
-
extracted_text: gr.update(value="", visible=True),
|
| 152 |
-
output_text: gr.update(value="")
|
| 153 |
-
}
|
| 154 |
input_mode.change(fn=update_visibility, inputs=input_mode, outputs=[input_text, audio_input, file_input, extracted_text, output_text])
|
| 155 |
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
translate_button.click(fn=handle_translate, inputs=[extracted_text, input_lang, output_lang], outputs=output_text)
|
| 169 |
-
|
| 170 |
-
demo.launch()
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import re
|
| 3 |
+
import tempfile
|
| 4 |
+
import logging
|
| 5 |
+
from typing import Optional, Dict, Tuple, Any
|
| 6 |
+
from pathlib import Path
|
| 7 |
+
|
| 8 |
import gradio as gr
|
|
|
|
| 9 |
import torch
|
|
|
|
|
|
|
| 10 |
import whisper
|
| 11 |
import fitz # PyMuPDF
|
| 12 |
import docx
|
| 13 |
from bs4 import BeautifulSoup
|
| 14 |
import markdown2
|
| 15 |
import chardet
|
| 16 |
+
from transformers import pipeline, MarianTokenizer, AutoModelForSeq2SeqLM
|
| 17 |
+
|
| 18 |
|
| 19 |
+
# -------------------------------
|
| 20 |
+
# Configuration & Logging Setup
|
| 21 |
+
# -------------------------------
|
| 22 |
|
| 23 |
+
logging.basicConfig(level=logging.INFO)
|
| 24 |
+
logger = logging.getLogger(__name__)
|
|
|
|
| 25 |
|
| 26 |
+
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 27 |
+
HF_TOKEN = os.getenv("HF_TOKEN")
|
| 28 |
+
|
| 29 |
+
# Language Pair Models
|
| 30 |
+
MODELS: Dict[Tuple[str, str], Dict[str, str]] = {
|
| 31 |
("English", "Wolof"): {"model_name": "LocaleNLP/localenlp-eng-wol-0.03", "tag": ">>wol<<"},
|
| 32 |
("Wolof", "English"): {"model_name": "LocaleNLP/localenlp-wol-eng-0.03", "tag": ">>eng<<"},
|
| 33 |
("English", "Hausa"): {"model_name": "LocaleNLP/localenlp-eng-hau-0.01", "tag": ">>hau<<"},
|
| 34 |
("Hausa", "English"): {"model_name": "LocaleNLP/localenlp-hau-eng-0.01", "tag": ">>eng<<"},
|
| 35 |
+
("English", "Darija"): {"model_name": "LocaleNLP/english_darija", "tag": ">>dar<<"}
|
| 36 |
}
|
| 37 |
|
| 38 |
+
SUPPORTED_LANGUAGES = ["English", "Wolof", "Hausa", "Darija"]
|
| 39 |
+
INPUT_MODES = ["Text", "Audio", "File"]
|
| 40 |
+
SUPPORTED_FILE_TYPES = [".pdf", ".docx", ".html", ".htm", ".md", ".srt", ".txt"]
|
| 41 |
+
|
| 42 |
+
# -------------------------------
|
| 43 |
+
# Model Manager
|
| 44 |
+
# -------------------------------
|
| 45 |
+
|
| 46 |
+
class ModelManager:
|
| 47 |
+
"""Manages loading and caching of translation and transcription models."""
|
| 48 |
+
|
| 49 |
+
def __init__(self):
|
| 50 |
+
self.translation_pipeline = None
|
| 51 |
+
self.whisper_model = None
|
| 52 |
+
|
| 53 |
+
def load_translation_model(self, src_lang: str, tgt_lang: str) -> Tuple[Any, str]:
|
| 54 |
+
key = (src_lang, tgt_lang)
|
| 55 |
+
if key not in MODELS:
|
| 56 |
+
raise ValueError(f"Unsupported language pair: {src_lang} -> {tgt_lang}")
|
| 57 |
+
|
| 58 |
+
config = MODELS[key]
|
| 59 |
+
model_name = config["model_name"]
|
| 60 |
+
lang_tag = config["tag"]
|
| 61 |
+
|
| 62 |
+
if self.translation_pipeline is None or self.translation_pipeline.model.config._name_or_path != model_name:
|
| 63 |
+
logger.info(f"Loading translation model: {model_name}")
|
| 64 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(model_name, token=HF_TOKEN).to(DEVICE)
|
| 65 |
+
tokenizer = MarianTokenizer.from_pretrained(model_name, token=HF_TOKEN)
|
| 66 |
+
self.translation_pipeline = pipeline(
|
| 67 |
+
"translation",
|
| 68 |
+
model=model,
|
| 69 |
+
tokenizer=tokenizer,
|
| 70 |
+
device=0 if DEVICE.type == "cuda" else -1
|
| 71 |
+
)
|
| 72 |
+
return self.translation_pipeline, lang_tag
|
| 73 |
+
|
| 74 |
+
def load_whisper_model(self) -> Any:
|
| 75 |
+
if self.whisper_model is None:
|
| 76 |
+
logger.info("Loading Whisper base model...")
|
| 77 |
+
self.whisper_model = whisper.load_model("base")
|
| 78 |
+
return self.whisper_model
|
| 79 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 80 |
|
| 81 |
+
# -------------------------------
|
| 82 |
+
# File Processing Utilities
|
| 83 |
+
# -------------------------------
|
| 84 |
+
|
| 85 |
+
def extract_text_from_file(file_path: str) -> str:
|
| 86 |
+
"""Extracts text from various file types."""
|
| 87 |
+
ext = Path(file_path).suffix.lower()
|
| 88 |
+
content = Path(file_path).read_bytes()
|
| 89 |
+
|
| 90 |
+
if ext == ".pdf":
|
| 91 |
with fitz.open(stream=content, filetype="pdf") as doc:
|
| 92 |
+
return "\n".join(page.get_text() for page in doc)
|
| 93 |
+
|
| 94 |
+
elif ext == ".docx":
|
| 95 |
+
doc = docx.Document(file_path)
|
| 96 |
+
return "\n".join(p.text for p in doc.paragraphs)
|
| 97 |
+
|
| 98 |
+
elif ext in (".html", ".htm"):
|
| 99 |
+
return BeautifulSoup(content.decode("utf-8", errors="ignore"), "html.parser").get_text()
|
| 100 |
+
|
| 101 |
+
elif ext == ".md":
|
| 102 |
+
html = markdown2.markdown(content.decode("utf-8", errors="ignore"))
|
| 103 |
+
return BeautifulSoup(html, "html.parser").get_text()
|
| 104 |
+
|
| 105 |
+
elif ext == ".srt":
|
| 106 |
+
decoded = content.decode("utf-8", errors="ignore")
|
| 107 |
+
return re.sub(r"\d+\n\d{2}:\d{2}:\d{2},\d{3} --> .*?\n", "", decoded)
|
| 108 |
+
|
| 109 |
+
elif ext in (".txt", ".text"):
|
| 110 |
+
encoding = chardet.detect(content)["encoding"]
|
| 111 |
+
return content.decode(encoding or "utf-8", errors="ignore")
|
| 112 |
+
|
| 113 |
else:
|
| 114 |
+
raise ValueError(f"Unsupported file type: {ext}")
|
| 115 |
+
|
| 116 |
+
|
| 117 |
+
# -------------------------------
|
| 118 |
+
# Translation Logic
|
| 119 |
+
# -------------------------------
|
| 120 |
+
|
| 121 |
+
def translate_text(text: str, src_lang: str, tgt_lang: str, model_manager: ModelManager) -> str:
|
| 122 |
+
"""Translates input text using the specified language pair."""
|
| 123 |
+
pipe, tag = model_manager.load_translation_model(src_lang, tgt_lang)
|
| 124 |
+
paragraphs = text.splitlines()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 125 |
translated_output = []
|
| 126 |
|
| 127 |
with torch.no_grad():
|
|
|
|
| 129 |
if not para.strip():
|
| 130 |
translated_output.append("")
|
| 131 |
continue
|
| 132 |
+
sentences = [s.strip() for s in para.split(". ") if s.strip()]
|
| 133 |
+
formatted = [f"{tag} {sentence}" for sentence in sentences]
|
| 134 |
+
results = pipe(
|
| 135 |
+
formatted,
|
| 136 |
+
max_length=5000,
|
| 137 |
+
num_beams=5,
|
| 138 |
+
early_stopping=True,
|
| 139 |
+
no_repeat_ngram_size=3,
|
| 140 |
+
repetition_penalty=1.5,
|
| 141 |
+
length_penalty=1.2
|
| 142 |
+
)
|
| 143 |
+
translated_sentences = [r["translation_text"].capitalize() for r in results]
|
| 144 |
+
translated_output.append(". ".join(translated_sentences))
|
| 145 |
+
|
| 146 |
return "\n".join(translated_output)
|
| 147 |
|
| 148 |
+
|
| 149 |
+
# -------------------------------
|
| 150 |
+
# Audio Transcription
|
| 151 |
+
# -------------------------------
|
| 152 |
+
|
| 153 |
+
def transcribe_audio(file_path: str, model_manager: ModelManager) -> str:
|
| 154 |
+
"""Transcribes audio file using Whisper."""
|
| 155 |
+
model = model_manager.load_whisper_model()
|
| 156 |
+
result = model.transcribe(file_path)
|
| 157 |
+
return result["text"]
|
| 158 |
+
|
| 159 |
+
|
| 160 |
+
# -------------------------------
|
| 161 |
+
# Main Processing Function
|
| 162 |
+
# -------------------------------
|
| 163 |
+
|
| 164 |
+
def process_input(
|
| 165 |
+
mode: str,
|
| 166 |
+
src_lang: str,
|
| 167 |
+
text_input: str,
|
| 168 |
+
audio_path: Optional[str],
|
| 169 |
+
file_obj: Optional[gr.FileData]
|
| 170 |
+
) -> str:
|
| 171 |
+
"""Processes input based on selected mode."""
|
| 172 |
+
if mode == "Text":
|
| 173 |
+
return text_input
|
| 174 |
+
elif mode == "Audio":
|
| 175 |
+
if src_lang != "English":
|
| 176 |
+
raise ValueError("Audio input must be in English.")
|
| 177 |
+
if not audio_path:
|
| 178 |
+
raise ValueError("No audio file uploaded.")
|
| 179 |
+
return transcribe_audio(audio_path, model_manager)
|
| 180 |
+
elif mode == "File":
|
| 181 |
+
if not file_obj:
|
| 182 |
+
raise ValueError("No file uploaded.")
|
| 183 |
+
return extract_text_from_file(file_obj.name)
|
| 184 |
return ""
|
| 185 |
|
| 186 |
+
|
| 187 |
+
# -------------------------------
|
| 188 |
+
# Gradio UI Logic
|
| 189 |
+
# -------------------------------
|
| 190 |
+
|
| 191 |
+
model_manager = ModelManager()
|
| 192 |
+
|
| 193 |
+
|
| 194 |
+
def update_visibility(mode: str) -> Dict[str, Any]:
|
| 195 |
+
"""Update visibility of input components based on selected mode."""
|
| 196 |
+
return {
|
| 197 |
+
input_text: gr.update(visible=(mode == "Text")),
|
| 198 |
+
audio_input: gr.update(visible=(mode == "Audio")),
|
| 199 |
+
file_input: gr.update(visible=(mode == "File")),
|
| 200 |
+
extracted_text: gr.update(value="", visible=True),
|
| 201 |
+
output_text: gr.update(value="")
|
| 202 |
+
}
|
| 203 |
+
|
| 204 |
+
|
| 205 |
+
def handle_process(
|
| 206 |
+
mode: str,
|
| 207 |
+
src_lang: str,
|
| 208 |
+
text_input: str,
|
| 209 |
+
audio_path: Optional[str],
|
| 210 |
+
file_obj: Optional[gr.FileData]
|
| 211 |
+
) -> Tuple[str, str]:
|
| 212 |
+
"""Handles the initial processing of input."""
|
| 213 |
+
try:
|
| 214 |
+
extracted = process_input(mode, src_lang, text_input, audio_path, file_obj)
|
| 215 |
+
return extracted, ""
|
| 216 |
+
except Exception as e:
|
| 217 |
+
logger.error(f"Processing error: {e}")
|
| 218 |
+
return "", f"Error: {str(e)}"
|
| 219 |
+
|
| 220 |
+
|
| 221 |
+
def handle_translate(extracted_text: str, src_lang: str, tgt_lang: str) -> str:
|
| 222 |
+
"""Handles translation of extracted text."""
|
| 223 |
+
if not extracted_text.strip():
|
| 224 |
+
return "No input text to translate."
|
| 225 |
+
try:
|
| 226 |
+
return translate_text(extracted_text, src_lang, tgt_lang, model_manager)
|
| 227 |
+
except Exception as e:
|
| 228 |
+
logger.error(f"Translation error: {e}")
|
| 229 |
+
return f"Translation error: {str(e)}"
|
| 230 |
+
|
| 231 |
+
|
| 232 |
+
# -------------------------------
|
| 233 |
+
# Gradio Interface
|
| 234 |
+
# -------------------------------
|
| 235 |
+
|
| 236 |
+
with gr.Blocks(title="LocaleNLP Translator") as demo:
|
| 237 |
+
gr.Markdown("## 🌍 LocaleNLP Multi-language Translator")
|
| 238 |
+
gr.Markdown("Supports translation between English, Wolof, Hausa, and Darija. Audio input must be in English.")
|
| 239 |
|
| 240 |
with gr.Row():
|
| 241 |
+
input_mode = gr.Radio(choices=INPUT_MODES, label="Input Type", value="Text")
|
| 242 |
+
input_lang = gr.Dropdown(choices=SUPPORTED_LANGUAGES[:-1], label="Input Language", value="English")
|
| 243 |
+
output_lang = gr.Dropdown(choices=SUPPORTED_LANGUAGES, label="Output Language", value="Wolof")
|
| 244 |
|
| 245 |
+
input_text = gr.Textbox(label="Enter Text", lines=10, visible=True)
|
| 246 |
+
audio_input = gr.Audio(label="Upload Audio (.wav, .mp3, .m4a)", type="filepath", visible=False)
|
| 247 |
+
file_input = gr.File(file_types=SUPPORTED_FILE_TYPES, label="Upload Document", visible=False)
|
| 248 |
|
| 249 |
extracted_text = gr.Textbox(label="Extracted / Transcribed Text", lines=10, interactive=False)
|
| 250 |
translate_button = gr.Button("Translate")
|
| 251 |
output_text = gr.Textbox(label="Translated Text", lines=10, interactive=False)
|
| 252 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 253 |
input_mode.change(fn=update_visibility, inputs=input_mode, outputs=[input_text, audio_input, file_input, extracted_text, output_text])
|
| 254 |
|
| 255 |
+
translate_button.click(
|
| 256 |
+
fn=handle_process,
|
| 257 |
+
inputs=[input_mode, input_lang, input_text, audio_input, file_input],
|
| 258 |
+
outputs=[extracted_text, output_text]
|
| 259 |
+
).then(
|
| 260 |
+
fn=handle_translate,
|
| 261 |
+
inputs=[extracted_text, input_lang, output_lang],
|
| 262 |
+
outputs=output_text
|
| 263 |
+
)
|
| 264 |
+
|
| 265 |
+
if __name__ == "__main__":
|
| 266 |
+
demo.launch()
|
|
|
|
|
|
|
|
|