Mgolo commited on
Commit
4f9d2c8
·
verified ·
1 Parent(s): ce7b853

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +8 -8
app.py CHANGED
@@ -8,7 +8,7 @@ import os
8
  import nltk
9
  nltk.download('punkt')
10
  from nltk.tokenize import sent_tokenize
11
-
12
  # Additions for file processing
13
  import fitz # PyMuPDF for PDF
14
  import docx
@@ -18,21 +18,21 @@ import chardet
18
 
19
  # --- Device selection ---
20
  device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
21
-
22
  # --- Load translation models ---
23
  def load_models():
24
  en_dar_model_path = "LocaleNLP/english_hausa"
25
  en_wol_model_path = "LocaleNLP/eng_wolof"
26
  en_hau_model_path = "LocaleNLP/english_darija"
27
 
28
- en_dar_model = AutoModelForSeq2SeqLM.from_pretrained(en_dar_model_path).to(device)
29
- en_dar_tokenizer = MarianTokenizer.from_pretrained(en_dar_model_path)
30
 
31
- en_wol_model = AutoModelForSeq2SeqLM.from_pretrained(en_wol_model_path).to(device)
32
- en_wol_tokenizer = MarianTokenizer.from_pretrained(en_wol_model_path)
33
 
34
- en_hau_model = AutoModelForSeq2SeqLM.from_pretrained(en_hau_model_path).to(device)
35
- en_hau_tokenizer = MarianTokenizer.from_pretrained(en_hau_model_path)
36
 
37
  en_dar_translator = pipeline("translation", model=en_dar_model, tokenizer=en_dar_tokenizer, device=0 if device.type == 'cuda' else -1)
38
  en_wol_translator = pipeline("translation", model=en_wol_model, tokenizer=en_wol_tokenizer, device=0 if device.type == 'cuda' else -1)
 
8
  import nltk
9
  nltk.download('punkt')
10
  from nltk.tokenize import sent_tokenize
11
+ import os
12
  # Additions for file processing
13
  import fitz # PyMuPDF for PDF
14
  import docx
 
18
 
19
  # --- Device selection ---
20
  device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
21
+ HF_TOKEN = os.getenv("HF_TOKEN")
22
  # --- Load translation models ---
23
  def load_models():
24
  en_dar_model_path = "LocaleNLP/english_hausa"
25
  en_wol_model_path = "LocaleNLP/eng_wolof"
26
  en_hau_model_path = "LocaleNLP/english_darija"
27
 
28
+ en_dar_model = AutoModelForSeq2SeqLM.from_pretrained(en_dar_model_path, token=HF_TOKEN).to(device)
29
+ en_dar_tokenizer = MarianTokenizer.from_pretrained(en_dar_model_path, token=HF_TOKEN)
30
 
31
+ en_wol_model = AutoModelForSeq2SeqLM.from_pretrained(en_wol_model_path, token=HF_TOKEN).to(device)
32
+ en_wol_tokenizer = MarianTokenizer.from_pretrained(en_wol_model_path, token=HF_TOKEN)
33
 
34
+ en_hau_model = AutoModelForSeq2SeqLM.from_pretrained(en_hau_model_path, token=HF_TOKEN).to(device)
35
+ en_hau_tokenizer = MarianTokenizer.from_pretrained(en_hau_model_path, token=HF_TOKEN)
36
 
37
  en_dar_translator = pipeline("translation", model=en_dar_model, tokenizer=en_dar_tokenizer, device=0 if device.type == 'cuda' else -1)
38
  en_wol_translator = pipeline("translation", model=en_wol_model, tokenizer=en_wol_tokenizer, device=0 if device.type == 'cuda' else -1)