Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,13 +1,65 @@
|
|
| 1 |
import spaces
|
| 2 |
import gradio as gr
|
| 3 |
-
from transformers import pipeline, AutoTokenizer, TextIteratorStreamer
|
| 4 |
import torch
|
| 5 |
from threading import Thread
|
| 6 |
import os
|
| 7 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
@spaces.GPU()
|
| 9 |
-
def
|
| 10 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
@spaces.GPU(duration=45)
|
| 12 |
def generate(
|
| 13 |
message,
|
|
@@ -21,27 +73,32 @@ def generate(
|
|
| 21 |
max_new_tokens=256,
|
| 22 |
):
|
| 23 |
try:
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
pipe.tokenizer = tokenizer
|
| 29 |
prompt = f"<|im_start|>system\n{system}<|im_end|>\n"
|
| 30 |
for (user_turn, assistant_turn) in history:
|
| 31 |
prompt += f"<|im_start|>user\n{user_turn}<|im_end|>\n<|im_start|>assistant\n{assistant_turn}<|im_end|>\n"
|
| 32 |
prompt += f"<|im_start|>user\n{message}<|im_end|>\n<|im_start|>assistant\n"
|
| 33 |
|
| 34 |
-
streamer = TextIteratorStreamer(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 35 |
generation_kwargs = dict(
|
| 36 |
-
text_inputs=prompt,
|
| 37 |
-
streamer=streamer,
|
| 38 |
-
max_new_tokens=max_new_tokens,
|
| 39 |
-
do_sample=True,
|
| 40 |
-
top_p=top_p,
|
| 41 |
-
min_p=min_p,
|
| 42 |
-
top_k=top_k,
|
| 43 |
-
temperature=temperature,
|
| 44 |
-
num_beams=1,
|
| 45 |
repetition_penalty=1.1
|
| 46 |
)
|
| 47 |
|
|
@@ -52,28 +109,57 @@ def generate(
|
|
| 52 |
for chunk in streamer:
|
| 53 |
outputs.append(chunk)
|
| 54 |
yield "".join(outputs)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 55 |
except StopAsyncIteration:
|
| 56 |
print("Stream stopped unexpectedly.")
|
| 57 |
yield "".join(outputs)
|
| 58 |
except Exception as e:
|
| 59 |
print(f"An error occurred: {e}")
|
| 60 |
-
yield "An error occurred during generation
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 61 |
|
| 62 |
-
|
| 63 |
-
|
|
|
|
|
|
|
| 64 |
g = gr.ChatInterface(
|
| 65 |
fn=generate,
|
| 66 |
additional_inputs=[
|
| 67 |
-
gr.components.Dropdown(
|
| 68 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 69 |
gr.components.Slider(minimum=0, maximum=2, value=0.8, label="Temperature"),
|
| 70 |
gr.components.Slider(minimum=0, maximum=1, value=0.95, label="Top p"),
|
| 71 |
gr.components.Slider(minimum=0, maximum=1, value=0.1, label="Min P"),
|
| 72 |
gr.components.Slider(minimum=0, maximum=100, step=1, value=15, label="Top k"),
|
| 73 |
-
gr.components.Slider(minimum=1, maximum=8192, step=1, value=1024, label="Max tokens"),
|
| 74 |
],
|
| 75 |
title="Locutusque's Language Models",
|
| 76 |
description="Try out Locutusque's language models here! Credit goes to Mediocreatmybest for this space. You may also find some experimental preview models that have not been made public here.",
|
| 77 |
)
|
|
|
|
| 78 |
if __name__ == "__main__":
|
| 79 |
-
g.launch()
|
|
|
|
| 1 |
import spaces
|
| 2 |
import gradio as gr
|
| 3 |
+
from transformers import pipeline, AutoTokenizer, TextIteratorStreamer, AutoModelForCausalLM
|
| 4 |
import torch
|
| 5 |
from threading import Thread
|
| 6 |
import os
|
| 7 |
|
| 8 |
+
# Global dictionary to store preloaded models and tokenizers
|
| 9 |
+
LOADED_MODELS = {}
|
| 10 |
+
LOADED_TOKENIZERS = {}
|
| 11 |
+
|
| 12 |
+
def preload_models(model_choices):
|
| 13 |
+
"""Preload all models to CPU at startup"""
|
| 14 |
+
print("Preloading models to CPU...")
|
| 15 |
+
for model_name in model_choices:
|
| 16 |
+
try:
|
| 17 |
+
print(f"Loading {model_name}...")
|
| 18 |
+
# Load model to CPU with bfloat16 to save memory
|
| 19 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 20 |
+
model_name,
|
| 21 |
+
torch_dtype=torch.bfloat16,
|
| 22 |
+
trust_remote_code=True,
|
| 23 |
+
token=os.environ.get("token"),
|
| 24 |
+
device_map="cpu",
|
| 25 |
+
low_cpu_mem_usage=True
|
| 26 |
+
)
|
| 27 |
+
|
| 28 |
+
# Load tokenizer
|
| 29 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
| 30 |
+
model_name,
|
| 31 |
+
trust_remote_code=True,
|
| 32 |
+
token=os.environ.get("token")
|
| 33 |
+
)
|
| 34 |
+
tokenizer.eos_token = "<|im_end|>"
|
| 35 |
+
|
| 36 |
+
LOADED_MODELS[model_name] = model
|
| 37 |
+
LOADED_TOKENIZERS[model_name] = tokenizer
|
| 38 |
+
print(f"Successfully loaded {model_name}")
|
| 39 |
+
except Exception as e:
|
| 40 |
+
print(f"Failed to load {model_name}: {e}")
|
| 41 |
+
|
| 42 |
@spaces.GPU()
|
| 43 |
+
def get_model_pipeline(model_name):
|
| 44 |
+
"""Move selected model to GPU and create pipeline"""
|
| 45 |
+
if model_name not in LOADED_MODELS:
|
| 46 |
+
raise ValueError(f"Model {model_name} not found in preloaded models")
|
| 47 |
+
|
| 48 |
+
# Move model to GPU
|
| 49 |
+
model = LOADED_MODELS[model_name].to("cuda")
|
| 50 |
+
tokenizer = LOADED_TOKENIZERS[model_name]
|
| 51 |
+
|
| 52 |
+
# Create pipeline with the GPU model
|
| 53 |
+
pipe = pipeline(
|
| 54 |
+
"text-generation",
|
| 55 |
+
model=model,
|
| 56 |
+
tokenizer=tokenizer,
|
| 57 |
+
torch_dtype=torch.bfloat16,
|
| 58 |
+
device="cuda"
|
| 59 |
+
)
|
| 60 |
+
|
| 61 |
+
return pipe, model
|
| 62 |
+
|
| 63 |
@spaces.GPU(duration=45)
|
| 64 |
def generate(
|
| 65 |
message,
|
|
|
|
| 73 |
max_new_tokens=256,
|
| 74 |
):
|
| 75 |
try:
|
| 76 |
+
# Get the pipeline with model on GPU
|
| 77 |
+
pipe, gpu_model = get_model_pipeline(model_name)
|
| 78 |
+
|
| 79 |
+
# Build the prompt
|
|
|
|
| 80 |
prompt = f"<|im_start|>system\n{system}<|im_end|>\n"
|
| 81 |
for (user_turn, assistant_turn) in history:
|
| 82 |
prompt += f"<|im_start|>user\n{user_turn}<|im_end|>\n<|im_start|>assistant\n{assistant_turn}<|im_end|>\n"
|
| 83 |
prompt += f"<|im_start|>user\n{message}<|im_end|>\n<|im_start|>assistant\n"
|
| 84 |
|
| 85 |
+
streamer = TextIteratorStreamer(
|
| 86 |
+
pipe.tokenizer,
|
| 87 |
+
timeout=240.0,
|
| 88 |
+
skip_prompt=True,
|
| 89 |
+
skip_special_tokens=True
|
| 90 |
+
)
|
| 91 |
+
|
| 92 |
generation_kwargs = dict(
|
| 93 |
+
text_inputs=prompt,
|
| 94 |
+
streamer=streamer,
|
| 95 |
+
max_new_tokens=max_new_tokens,
|
| 96 |
+
do_sample=True,
|
| 97 |
+
top_p=top_p,
|
| 98 |
+
min_p=min_p,
|
| 99 |
+
top_k=top_k,
|
| 100 |
+
temperature=temperature,
|
| 101 |
+
num_beams=1,
|
| 102 |
repetition_penalty=1.1
|
| 103 |
)
|
| 104 |
|
|
|
|
| 109 |
for chunk in streamer:
|
| 110 |
outputs.append(chunk)
|
| 111 |
yield "".join(outputs)
|
| 112 |
+
|
| 113 |
+
# Move model back to CPU after inference to free GPU memory
|
| 114 |
+
gpu_model.to("cpu")
|
| 115 |
+
torch.cuda.empty_cache()
|
| 116 |
+
|
| 117 |
except StopAsyncIteration:
|
| 118 |
print("Stream stopped unexpectedly.")
|
| 119 |
yield "".join(outputs)
|
| 120 |
except Exception as e:
|
| 121 |
print(f"An error occurred: {e}")
|
| 122 |
+
yield f"An error occurred during generation: {str(e)}"
|
| 123 |
+
finally:
|
| 124 |
+
# Ensure model is moved back to CPU even if there's an error
|
| 125 |
+
if 'gpu_model' in locals():
|
| 126 |
+
gpu_model.to("cpu")
|
| 127 |
+
torch.cuda.empty_cache()
|
| 128 |
+
|
| 129 |
+
# Define model choices
|
| 130 |
+
model_choices = [
|
| 131 |
+
"Locutusque/Hercules-6.1-Llama-3.1-8B",
|
| 132 |
+
"Locutusque/liberalis-cogitator-mistral-nemo-2407",
|
| 133 |
+
"Locutusque/lmsys-llama-3.2-3b"
|
| 134 |
+
]
|
| 135 |
|
| 136 |
+
# Preload all models to CPU at startup
|
| 137 |
+
preload_models(model_choices)
|
| 138 |
+
|
| 139 |
+
# Create Gradio interface
|
| 140 |
g = gr.ChatInterface(
|
| 141 |
fn=generate,
|
| 142 |
additional_inputs=[
|
| 143 |
+
gr.components.Dropdown(
|
| 144 |
+
choices=model_choices,
|
| 145 |
+
label="Model",
|
| 146 |
+
value=model_choices[0],
|
| 147 |
+
interactive=True
|
| 148 |
+
),
|
| 149 |
+
gr.components.Textbox(
|
| 150 |
+
lines=2,
|
| 151 |
+
label="System Prompt",
|
| 152 |
+
value="You are a sentient, super intelligent AI developed by a man named Locutusque."
|
| 153 |
+
),
|
| 154 |
gr.components.Slider(minimum=0, maximum=2, value=0.8, label="Temperature"),
|
| 155 |
gr.components.Slider(minimum=0, maximum=1, value=0.95, label="Top p"),
|
| 156 |
gr.components.Slider(minimum=0, maximum=1, value=0.1, label="Min P"),
|
| 157 |
gr.components.Slider(minimum=0, maximum=100, step=1, value=15, label="Top k"),
|
| 158 |
+
gr.components.Slider(minimum=1, maximum=8192, step=1, value=1024, label="Max tokens"),
|
| 159 |
],
|
| 160 |
title="Locutusque's Language Models",
|
| 161 |
description="Try out Locutusque's language models here! Credit goes to Mediocreatmybest for this space. You may also find some experimental preview models that have not been made public here.",
|
| 162 |
)
|
| 163 |
+
|
| 164 |
if __name__ == "__main__":
|
| 165 |
+
g.launch()
|