Spaces:
Runtime error
Runtime error
| from diffusers import AutoencoderKL, UNet2DConditionModel, StableDiffusionPipeline, StableDiffusionImg2ImgPipeline, DPMSolverMultistepScheduler | |
| import gradio as gr | |
| import torch | |
| from PIL import Image | |
| import os | |
| scheduler = DPMSolverMultistepScheduler( | |
| beta_start=0.00085, | |
| beta_end=0.012, | |
| beta_schedule="scaled_linear", | |
| num_train_timesteps=1000, | |
| trained_betas=None, | |
| prediction_type="epsilon", | |
| thresholding=False, | |
| algorithm_type="dpmsolver++", | |
| solver_type="midpoint", | |
| lower_order_final=True, | |
| ) | |
| class Model: | |
| def __init__(self, name, path, prefix): | |
| self.name = name | |
| self.path = path | |
| self.prefix = prefix | |
| self.pipe_t2i = None | |
| self.pipe_i2i = None | |
| models = [ | |
| Model("Stable-Diffusion-v1.4", "CompVis/stable-diffusion-v1-4", "The 1.4 version of official stable-diffusion"), | |
| Model("Waifu", "hakurei/waifu-diffusion", "anime style"), | |
| ] | |
| last_mode = "txt2img" | |
| current_model = models[0] | |
| current_model_path = current_model.path | |
| auth_token = os.getenv("HUGGING_FACE_HUB_TOKEN") | |
| print(f"Is CUDA available: {torch.cuda.is_available()}") | |
| if torch.cuda.is_available(): | |
| vae = AutoencoderKL.from_pretrained(current_model.path, subfolder="vae", torch_dtype=torch.float16, use_auth_token=auth_token) | |
| for model in models: | |
| try: | |
| unet = UNet2DConditionModel.from_pretrained(model.path, subfolder="unet", torch_dtype=torch.float16, use_auth_token=auth_token) | |
| model.pipe_t2i = StableDiffusionPipeline.from_pretrained(model.path, unet=unet, vae=vae, torch_dtype=torch.float16, scheduler=scheduler, use_auth_token=auth_token) | |
| model.pipe_i2i = StableDiffusionImg2ImgPipeline.from_pretrained(model.path, unet=unet, vae=vae, torch_dtype=torch.float16, scheduler=scheduler, use_auth_token=auth_token) | |
| except: | |
| models.remove(model) | |
| pipe = models[0].pipe_t2i | |
| pipe = pipe.to("cuda") | |
| else: | |
| vae = AutoencoderKL.from_pretrained(current_model.path, subfolder="vae", use_auth_token=auth_token) | |
| for model in models: | |
| try: | |
| unet = UNet2DConditionModel.from_pretrained(model.path, subfolder="unet", use_auth_token=auth_token) | |
| model.pipe_t2i = StableDiffusionPipeline.from_pretrained(model.path, unet=unet, vae=vae, scheduler=scheduler, use_auth_token=auth_token) | |
| model.pipe_i2i = StableDiffusionImg2ImgPipeline.from_pretrained(model.path, unet=unet, vae=vae, scheduler=scheduler, use_auth_token=auth_token) | |
| except: | |
| models.remove(model) | |
| pipe = models[0].pipe_t2i | |
| pipe = pipe.to("cpu") | |
| device = "GPU π₯" if torch.cuda.is_available() else "CPU π₯Ά" | |
| def inference(model_name, prompt, guidance, steps, width=512, height=512, seed=0, img=None, strength=0.5, neg_prompt=""): | |
| global current_model | |
| for model in models: | |
| if model.name == model_name: | |
| current_model = model | |
| model_path = current_model.path | |
| generator = torch.Generator('cuda' if torch.cuda.is_available() else 'cpu').manual_seed(seed) if seed != 0 else None | |
| if img is not None: | |
| return img_to_img(model_path, prompt, neg_prompt, img, strength, guidance, steps, width, height, generator) | |
| else: | |
| return txt_to_img(model_path, prompt, neg_prompt, guidance, steps, width, height, generator) | |
| def txt_to_img(model_path, prompt, neg_prompt, guidance, steps, width, height, generator=None): | |
| global last_mode | |
| global pipe | |
| global current_model_path | |
| if model_path != current_model_path or last_mode != "txt2img": | |
| current_model_path = model_path | |
| pipe.to("cpu") | |
| pipe = current_model.pipe_t2i | |
| if torch.cuda.is_available(): | |
| pipe = pipe.to("cuda") | |
| last_mode = "txt2img" | |
| prompt = current_model.prefix + prompt | |
| result = pipe( | |
| prompt, | |
| negative_prompt = neg_prompt, | |
| # num_images_per_prompt=n_images, | |
| num_inference_steps = int(steps), | |
| guidance_scale = guidance, | |
| width = width, | |
| height = height, | |
| generator = generator) | |
| return replace_nsfw_images(result) | |
| def img_to_img(model_path, prompt, neg_prompt, img, strength, guidance, steps, width, height, generator=None): | |
| global last_mode | |
| global pipe | |
| global current_model_path | |
| if model_path != current_model_path or last_mode != "img2img": | |
| current_model_path = model_path | |
| pipe.to("cpu") | |
| pipe = current_model.pipe_i2i | |
| if torch.cuda.is_available(): | |
| pipe = pipe.to("cuda") | |
| last_mode = "img2img" | |
| prompt = current_model.prefix + prompt | |
| ratio = min(height / img.height, width / img.width) | |
| img = img.resize((int(img.width * ratio), int(img.height * ratio)), Image.LANCZOS) | |
| result = pipe( | |
| prompt, | |
| negative_prompt = neg_prompt, | |
| # num_images_per_prompt=n_images, | |
| init_image = img, | |
| num_inference_steps = int(steps), | |
| strength = strength, | |
| guidance_scale = guidance, | |
| #width = width, | |
| #height = height, | |
| generator = generator) | |
| return replace_nsfw_images(result) | |
| def replace_nsfw_images(results): | |
| for i in range(len(results.images)): | |
| if results.nsfw_content_detected[i]: | |
| results.images[i] = Image.open("nsfw.png") | |
| return results.images[0] | |
| css = """ | |
| <style> | |
| .finetuned-diffusion-div { | |
| text-align: center; | |
| max-width: 700px; | |
| margin: 0 auto; | |
| font-family: 'IBM Plex Sans', sans-serif; | |
| } | |
| .finetuned-diffusion-div div { | |
| display: inline-flex; | |
| align-items: center; | |
| gap: 0.8rem; | |
| font-size: 1.75rem; | |
| } | |
| .finetuned-diffusion-div div h1 { | |
| font-weight: 900; | |
| margin-top: 15px; | |
| margin-bottom: 15px; | |
| text-align: center; | |
| line-height: 150%; | |
| } | |
| .finetuned-diffusion-div p { | |
| margin-bottom: 10px; | |
| font-size: 94%; | |
| } | |
| .finetuned-diffusion-div p a { | |
| text-decoration: underline; | |
| } | |
| .tabs { | |
| margin-top: 0px; | |
| margin-bottom: 0px; | |
| } | |
| #gallery { | |
| min-height: 20rem; | |
| } | |
| .container { | |
| max-width: 1000px; | |
| margin: auto; | |
| padding-top: 1.5rem; | |
| } | |
| </style> | |
| """ | |
| with gr.Blocks(css=css) as demo: | |
| gr.HTML( | |
| f""" | |
| <div class="finetuned-diffusion-div"> | |
| <div> | |
| <h1>Stable-Diffusion with DPM-Solver (fastest sampler for diffusion models) </h1> | |
| </div> | |
| <br> | |
| <p> | |
| β€οΈ Acknowledgement: Hardware resources of this demo are supported by HuggingFace π€ . Many thanks for the help! | |
| </p> | |
| <br> | |
| <p> | |
| This is a demo of sampling by DPM-Solver with two variants of Stable Diffusion models, including <a href="https://huggingface.co/CompVis/stable-diffusion-v1-4">Stable-Diffusion-v1.4</a> and <a href="https://huggingface.co/hakurei/waifu-diffusion">Waifu</a>. | |
| </p> | |
| <br> | |
| <p> | |
| <a href="https://github.com/LuChengTHU/dpm-solver">DPM-Solver</a> (Neurips 2022 Oral) is a fast high-order solver customized for diffusion ODEs, which can generate high-quality samples by diffusion models within only 10-25 steps. DPM-Solver has an analytical formulation and is very easy to use for all types of Gaussian diffusion models, and includes <a href="https://arxiv.org/abs/2010.02502">DDIM</a> as a first-order special case. | |
| </p> | |
| <p> | |
| We use <a href="https://github.com/huggingface/diffusers">Diffusers</a> 𧨠to implement this demo, which currently supports the multistep DPM-Solver scheduler. For more details of DPM-Solver with Diffusers, check <a href="https://github.com/huggingface/diffusers/pull/1132">this pull request</a>. | |
| </p> | |
| <br> | |
| <p> | |
| Currently, the default sampler of stable-diffusion is <a href="https://arxiv.org/abs/2202.09778">PNDM</a>, which needs 50 steps to generate high-quality samples. However, DPM-Solver can generate high-quality samples within only <span style="font-weight: bold;">20-25</span> steps, and for some samples even within <span style="font-weight: bold;">10-15</span> steps. | |
| </p> | |
| <br> | |
| <p> | |
| Running on <b>{device}</b> | |
| </p> | |
| </div> | |
| """ | |
| ) | |
| with gr.Row(): | |
| with gr.Column(scale=55): | |
| with gr.Group(): | |
| model_name = gr.Dropdown(label="Model", choices=[m.name for m in models], value=current_model.name) | |
| with gr.Row(): | |
| prompt = gr.Textbox(label="Prompt", show_label=False, max_lines=2,placeholder="Enter prompt. Style applied automatically").style(container=False) | |
| generate = gr.Button(value="Generate").style(rounded=(False, True, True, False)) | |
| image_out = gr.Image(height=512) | |
| # gallery = gr.Gallery( | |
| # label="Generated images", show_label=False, elem_id="gallery" | |
| # ).style(grid=[1], height="auto") | |
| with gr.Column(scale=45): | |
| with gr.Tab("Options"): | |
| with gr.Group(): | |
| neg_prompt = gr.Textbox(label="Negative prompt", placeholder="What to exclude from the image") | |
| # n_images = gr.Slider(label="Images", value=1, minimum=1, maximum=4, step=1) | |
| with gr.Row(): | |
| guidance = gr.Slider(label="Guidance scale", value=7.5, maximum=15) | |
| steps = gr.Slider(label="Steps", value=25, minimum=2, maximum=100, step=1) | |
| with gr.Row(): | |
| width = gr.Slider(label="Width", value=512, minimum=64, maximum=1024, step=8) | |
| height = gr.Slider(label="Height", value=512, minimum=64, maximum=1024, step=8) | |
| seed = gr.Slider(0, 2147483647, label='Seed (0 = random)', value=0, step=1) | |
| with gr.Tab("Image to image"): | |
| with gr.Group(): | |
| image = gr.Image(label="Image", height=256, tool="editor", type="pil") | |
| strength = gr.Slider(label="Transformation strength", minimum=0, maximum=1, step=0.01, value=0.5) | |
| # model_name.change(lambda x: gr.update(visible = x == models[0].name), inputs=model_name, outputs=custom_model_group) | |
| inputs = [model_name, prompt, guidance, steps, width, height, seed, image, strength, neg_prompt] | |
| prompt.submit(inference, inputs=inputs, outputs=image_out) | |
| generate.click(inference, inputs=inputs, outputs=image_out) | |
| gr.Markdown(''' | |
| Stable-diffusion Models by [CompVis](https://huggingface.co/CompVis) and [stabilityai](https://huggingface.co/stabilityai), Waifu-diffusion models by [@hakurei](https://huggingface.co/hakurei). Most of the code of this demo are copied from [@anzorq's fintuned-diffusion](https://huggingface.co/spaces/anzorq/finetuned_diffusion/tree/main) β€οΈ<br> | |
| Space by [Cheng Lu](https://github.com/LuChengTHU). [](https://twitter.com/ChengLu05671218) | |
|  | |
| ''') | |
| demo.queue(concurrency_count=1) | |
| demo.launch(debug=False, share=False) | |