File size: 8,370 Bytes
1e98ab1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
"""
Shared LLM Model Manager
Single Qwen2.5-Coder-1.5B instance shared by NL translator and AI analysis
Prevents duplicate model loading and memory waste
"""
import threading
import queue
import time
from typing import Optional, Dict, Any, List
from pathlib import Path

try:
    from llama_cpp import Llama
except ImportError:
    Llama = None

class SharedModelManager:
    """Thread-safe singleton manager for shared LLM model"""
    
    _instance = None
    _lock = threading.Lock()
    
    def __new__(cls):
        if cls._instance is None:
            with cls._lock:
                if cls._instance is None:
                    cls._instance = super().__new__(cls)
        return cls._instance
    
    def __init__(self):
        # Only initialize once
        if hasattr(self, '_initialized'):
            return
        
        self._initialized = True
        self.model = None  # type: Optional[Llama]
        self.model_path = None  # type: Optional[str]
        self.model_loaded = False
        self.last_error = None  # type: Optional[str]
        
        # Request queue for sequential access
        self._request_queue = queue.Queue()  # type: queue.Queue
        self._result_queues = {}  # type: Dict[int, queue.Queue]
        self._queue_lock = threading.Lock()
        self._worker_thread = None  # type: Optional[threading.Thread]
        self._stop_worker = False
        
    def load_model(self, model_path: str = "qwen2.5-coder-1.5b-instruct-q4_0.gguf") -> tuple[bool, Optional[str]]:
        """Load the shared model (thread-safe)"""
        with self._lock:
            if self.model_loaded and self.model_path == model_path:
                return True, None
            
            if Llama is None:
                self.last_error = "llama-cpp-python not installed"
                return False, self.last_error
            
            try:
                # Unload previous model if different
                if self.model is not None and self.model_path != model_path:
                    del self.model
                    self.model = None
                    self.model_loaded = False
                
                # Load new model
                full_path = Path(__file__).parent / model_path
                if not full_path.exists():
                    self.last_error = f"Model file not found: {model_path}"
                    return False, self.last_error
                
                self.model = Llama(
                    model_path=str(full_path),
                    n_ctx=4096,
                    n_threads=4,
                    verbose=False,
                    chat_format='qwen2'
                )
                
                self.model_path = model_path
                self.model_loaded = True
                self.last_error = None
                
                # Start worker thread if not running
                if self._worker_thread is None or not self._worker_thread.is_alive():
                    self._stop_worker = False
                    self._worker_thread = threading.Thread(target=self._process_requests, daemon=True)
                    self._worker_thread.start()
                
                return True, None
                
            except Exception as e:
                self.last_error = f"Failed to load model: {str(e)}"
                self.model_loaded = False
                return False, self.last_error
    
    def _process_requests(self):
        """Worker thread to process model requests sequentially"""
        while not self._stop_worker:
            try:
                # Get request with timeout to check stop flag
                try:
                    request = self._request_queue.get(timeout=0.5)
                except queue.Empty:
                    continue
                
                request_id = request['id']
                messages = request['messages']
                max_tokens = request.get('max_tokens', 512)
                temperature = request.get('temperature', 0.7)
                
                # Get result queue for this request
                with self._queue_lock:
                    result_queue = self._result_queues.get(request_id)
                
                if result_queue is None:
                    continue
                
                try:
                    # Check model is loaded
                    if not self.model_loaded or self.model is None:
                        result_queue.put({
                            'status': 'error',
                            'message': 'Model not loaded'
                        })
                        continue
                    
                    # Process request
                    response = self.model.create_chat_completion(
                        messages=messages,
                        max_tokens=max_tokens,
                        temperature=temperature,
                        stream=False
                    )
                    
                    # Extract text from response
                    if response and 'choices' in response and len(response['choices']) > 0:
                        text = response['choices'][0].get('message', {}).get('content', '')
                        result_queue.put({
                            'status': 'success',
                            'text': text
                        })
                    else:
                        result_queue.put({
                            'status': 'error',
                            'message': 'Empty response from model'
                        })
                    
                except Exception as e:
                    result_queue.put({
                        'status': 'error',
                        'message': f"Model inference error: {str(e)}"
                    })
                
            except Exception as e:
                print(f"Worker thread error: {e}")
                time.sleep(0.1)
    
    def generate(self, messages: List[Dict[str, str]], max_tokens: int = 512, 
                 temperature: float = 0.7, timeout: float = 30.0) -> tuple[bool, Optional[str], Optional[str]]:
        """
        Generate response from model (thread-safe, queued)
        
        Args:
            messages: List of {role, content} dicts
            max_tokens: Maximum tokens to generate
            temperature: Sampling temperature
            timeout: Maximum wait time in seconds
            
        Returns:
            (success, response_text, error_message)
        """
        if not self.model_loaded:
            return False, None, "Model not loaded. Call load_model() first."
        
        # Create request
        request_id = id(threading.current_thread()) + int(time.time() * 1000000)
        result_queue: queue.Queue = queue.Queue()
        
        # Register result queue
        with self._queue_lock:
            self._result_queues[request_id] = result_queue
        
        try:
            # Submit request
            self._request_queue.put({
                'id': request_id,
                'messages': messages,
                'max_tokens': max_tokens,
                'temperature': temperature
            })
            
            # Wait for result
            try:
                result = result_queue.get(timeout=timeout)
            except queue.Empty:
                return False, None, f"Request timeout after {timeout}s"
            
            if result['status'] == 'success':
                return True, result['text'], None
            else:
                return False, None, result.get('message', 'Unknown error')
            
        finally:
            # Cleanup result queue
            with self._queue_lock:
                self._result_queues.pop(request_id, None)
    
    def shutdown(self):
        """Cleanup resources"""
        self._stop_worker = True
        if self._worker_thread is not None:
            self._worker_thread.join(timeout=2.0)
        
        with self._lock:
            if self.model is not None:
                del self.model
                self.model = None
            self.model_loaded = False

# Global singleton instance
_shared_model_manager = SharedModelManager()

def get_shared_model() -> SharedModelManager:
    """Get the shared model manager singleton"""
    return _shared_model_manager