File size: 25,616 Bytes
12d64f8
 
7bb190d
 
12d64f8
 
 
 
 
 
 
 
7bb190d
 
 
 
1e98ab1
12d64f8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7bb190d
 
 
 
 
 
 
 
12d64f8
 
 
 
 
 
 
1e98ab1
12d64f8
 
 
 
 
 
 
6f16aa1
 
 
 
 
 
12d64f8
 
 
 
 
 
 
 
 
 
 
 
 
1e98ab1
 
 
fa2c1d8
1e98ab1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12d64f8
 
 
 
 
 
 
 
6f16aa1
12d64f8
6f16aa1
12d64f8
6f16aa1
12d64f8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6f16aa1
12d64f8
 
 
 
 
 
 
 
 
 
6f16aa1
12d64f8
 
 
 
 
 
 
 
fa2c1d8
 
 
 
12d64f8
 
fa2c1d8
 
 
 
12d64f8
 
fa2c1d8
12d64f8
 
 
 
fa2c1d8
12d64f8
 
fa2c1d8
12d64f8
7bb190d
fa2c1d8
 
12d64f8
 
fa2c1d8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12d64f8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8e1770a
fa2c1d8
12d64f8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
"""
AI Tactical Analysis System
Uses Qwen2.5-Coder-1.5B via shared model manager
ONLY uses the single shared LLM instance - NO separate process fallback
"""
import os
import re
import json
import time
from typing import Optional, Dict, Any, List
from pathlib import Path

# Import shared model manager (REQUIRED - no fallback)
from model_manager import get_shared_model

USE_SHARED_MODEL = True  # Always true now

# Global model download status (polled by server for UI)
_MODEL_DOWNLOAD_STATUS: Dict[str, Any] = {
    'status': 'idle',   # idle | starting | downloading | retrying | done | error
    'percent': 0,
    'note': '',
    'path': ''
}

def _update_model_download_status(update: Dict[str, Any]) -> None:
    try:
        _MODEL_DOWNLOAD_STATUS.update(update)
    except Exception:
        pass

def get_model_download_status() -> Dict[str, Any]:
    return dict(_MODEL_DOWNLOAD_STATUS)


# =============================================================================
# SINGLE LLM ARCHITECTURE
# =============================================================================
# This module ONLY uses the shared model from model_manager.py
# OLD CODE REMOVED: _llama_worker() that loaded duplicate LLM in separate process
# That caused "falling back to process isolation" and severe lag
# Now: One model, loaded once, shared by all AI tasks ✅
# =============================================================================


class AIAnalyzer:
    """
    AI Tactical Analysis System
    
    Provides battlefield analysis using Qwen2.5-0.5B model.
    Uses shared model manager to avoid duplicate loading with NL interface.
    """
    
    def __init__(self, model_path: Optional[str] = None):
        """Initialize AI analyzer with model path"""
        if model_path is None:
            # Try default locations (existing files)
            possible_paths = [
                Path("./qwen2.5-coder-1.5b-instruct-q4_0.gguf"),
                Path("../qwen2.5-coder-1.5b-instruct-q4_0.gguf"),
                Path.home() / "rts" / "qwen2.5-coder-1.5b-instruct-q4_0.gguf",
                Path.home() / ".cache" / "rts" / "qwen2.5-coder-1.5b-instruct-q4_0.gguf",
                Path("/data/qwen2.5-coder-1.5b-instruct-q4_0.gguf"),
                Path("/tmp/rts/qwen2.5-coder-1.5b-instruct-q4_0.gguf"),
            ]

            for path in possible_paths:
                try:
                    if path.exists():
                        model_path = str(path)
                        break
                except Exception:
                    continue
        
        self.model_path = model_path
        self.model_available = model_path is not None and Path(model_path).exists()
        
        # Use shared model manager if available
        self.use_shared = USE_SHARED_MODEL
        self.shared_model = None
        self._current_analysis_request_id = None  # Track current active analysis
        if self.use_shared:
            try:
                self.shared_model = get_shared_model()
                # Ensure model is loaded
                if self.model_available and model_path:
                    success, error = self.shared_model.load_model(Path(model_path).name)
                    if success:
                        print(f"✓ AI Analysis using SHARED model: {Path(model_path).name}")
                    else:
                        print(f"⚠️ Failed to load shared model: {error}")
                        self.use_shared = False
            except Exception as e:
                print(f"⚠️ Shared model unavailable: {e}")
                self.use_shared = False
        
        if not self.model_available:
            print(f"⚠️ AI Model not found. Attempting automatic download...")
            
            # Try to download the model automatically
            try:
                import sys
                import urllib.request
                
                model_url = "https://huggingface.co/Qwen/Qwen2.5-Coder-1.5B-Instruct-GGUF/resolve/main/qwen2.5-coder-1.5b-instruct-q4_0.gguf"
                # Fallback URL (blob with download param)
                alt_url = "https://huggingface.co/Qwen/Qwen2.5-Coder-1.5B-Instruct-GGUF/blob/main/qwen2.5-coder-1.5b-instruct-q4_0.gguf?download=1"
                # Choose a writable destination directory
                filename = "qwen2.5-coder-1.5b-instruct-q4_0.gguf"
                candidate_dirs = [
                    Path(os.getenv("RTS_MODEL_DIR", "")),
                    Path.cwd(),
                    Path(__file__).resolve().parent,                 # /web
                    Path(__file__).resolve().parent.parent,          # repo root
                    Path.home() / "rts",
                    Path.home() / ".cache" / "rts",
                    Path("/data"),
                    Path("/tmp") / "rts",
                ]
                default_path: Path = Path.cwd() / filename
                for d in candidate_dirs:
                    try:
                        if not str(d):
                            continue
                        d.mkdir(parents=True, exist_ok=True)
                        test_file = d / (".write_test")
                        with open(test_file, 'w') as tf:
                            tf.write('ok')
                        test_file.unlink(missing_ok=True)  # type: ignore[arg-type]
                        default_path = d / filename
                        break
                    except Exception:
                        continue
                
                _update_model_download_status({
                    'status': 'starting',
                    'percent': 0,
                    'note': 'starting',
                    'path': str(default_path)
                })
                print(f"📦 Downloading model (~350 MB)...")
                print(f"   From: {model_url}")
                print(f"   To: {default_path}")
                print(f"   This may take a few minutes...")
                
                # Simple progress callback
                def progress_callback(block_num, block_size, total_size):
                    if total_size > 0 and block_num % 100 == 0:
                        downloaded = block_num * block_size
                        percent = min(100, (downloaded / total_size) * 100)
                        mb_downloaded = downloaded / (1024 * 1024)
                        mb_total = total_size / (1024 * 1024)
                        _update_model_download_status({
                            'status': 'downloading',
                            'percent': round(percent, 1),
                            'note': f"{mb_downloaded:.1f}/{mb_total:.1f} MB",
                            'path': str(default_path)
                        })
                        print(f"   Progress: {percent:.1f}% ({mb_downloaded:.1f}/{mb_total:.1f} MB)", end='\r')
                
                # Ensure destination directory exists (should already be validated)
                try:
                    default_path.parent.mkdir(parents=True, exist_ok=True)
                except Exception:
                    pass
                
                success = False
                for attempt in range(3):
                    try:
                        # Try urllib first
                        urllib.request.urlretrieve(model_url, default_path, reporthook=progress_callback)
                        success = True
                        break
                    except Exception:
                        # Fallback to requests streaming
                        # Attempt streaming with requests if available
                        used_requests = False
                        try:
                            try:
                                import requests  # type: ignore
                            except Exception:
                                requests = None  # type: ignore
                            if requests is not None:  # type: ignore
                                with requests.get(model_url, stream=True, timeout=60) as r:  # type: ignore
                                    r.raise_for_status()
                                    total = int(r.headers.get('Content-Length', 0))
                                    downloaded = 0
                                    with open(default_path, 'wb') as f:
                                        for chunk in r.iter_content(chunk_size=1024 * 1024):  # 1MB
                                            if not chunk:
                                                continue
                                            f.write(chunk)
                                            downloaded += len(chunk)
                                            if total > 0:
                                                percent = min(100, downloaded * 100 / total)
                                                _update_model_download_status({
                                                    'status': 'downloading',
                                                    'percent': round(percent, 1),
                                                    'note': f"{downloaded/1048576:.1f}/{total/1048576:.1f} MB",
                                                    'path': str(default_path)
                                                })
                                                print(f"   Progress: {percent:.1f}% ({downloaded/1048576:.1f}/{total/1048576:.1f} MB)", end='\r')
                                success = True
                                used_requests = True
                                break
                        except Exception:
                            # ignore and try alternative below
                            pass
                        # Last chance this attempt: alternative URL via urllib
                        try:
                            urllib.request.urlretrieve(alt_url, default_path, reporthook=progress_callback)
                            success = True
                            break
                        except Exception as e:
                            wait = 2 ** attempt
                            _update_model_download_status({
                                'status': 'retrying',
                                'percent': 0,
                                'note': f"attempt {attempt+1} failed: {e}",
                                'path': str(default_path)
                            })
                            print(f"   Download attempt {attempt+1}/3 failed: {e}. Retrying in {wait}s...")
                            time.sleep(wait)
                
                print()  # New line after progress
                
                # Verify download
                if success and default_path.exists():
                    size_mb = default_path.stat().st_size / (1024 * 1024)
                    print(f"✅ Model downloaded successfully! ({size_mb:.1f} MB)")
                    self.model_path = str(default_path)
                    self.model_available = True
                    _update_model_download_status({
                        'status': 'done',
                        'percent': 100,
                        'note': f"{size_mb:.1f} MB",
                        'path': str(default_path)
                    })
                else:
                    print(f"❌ Download failed. Tactical analysis disabled.")
                    print(f"   Manual download: https://huggingface.co/Qwen/Qwen2.5-Coder-1.5B-Instruct-GGUF")
                    _update_model_download_status({
                        'status': 'error',
                        'percent': 0,
                        'note': 'download failed',
                        'path': str(default_path)
                    })
                    
            except Exception as e:
                print(f"❌ Auto-download failed: {e}")
                print(f"   Tactical analysis disabled.")
                print(f"   Manual download: https://huggingface.co/Qwen/Qwen2.5-Coder-1.5B-Instruct-GGUF")
                _update_model_download_status({
                    'status': 'error',
                    'percent': 0,
                    'note': str(e),
                    'path': ''
                })
    
    def generate_response(
        self,
        prompt: str,
        max_tokens: int = 256,
        temperature: float = 0.7
    ) -> Dict[str, Any]:
        """
        Generate a response from the model.
        
        NO TIMEOUT - waits for inference to complete (showcases LLM ability).
        Only cancelled if superseded by new analysis request.
        
        Args:
            prompt: Input prompt
            max_tokens: Maximum tokens to generate
            temperature: Sampling temperature
            
        Returns:
            Dict with status and data/message
        """
        if not self.model_available:
            return {'status': 'error', 'message': 'Model not loaded'}
        
        # ONLY use shared model - NO fallback to separate process
        if not (self.use_shared and self.shared_model and self.shared_model.model_loaded):
            return {'status': 'error', 'message': 'Shared model not available'}
        
        try:
            # Cancel previous analysis if any (one active analysis at a time)
            if self._current_analysis_request_id is not None:
                self.shared_model.cancel_request(self._current_analysis_request_id)
                print(f"🔄 Cancelled previous AI analysis request {self._current_analysis_request_id} (new analysis requested)")
            
            messages = [
                {"role": "user", "content": prompt}
            ]
            
            # Submit request and wait for completion (no timeout)
            success, response_text, error_message = self.shared_model.generate(
                messages=messages,
                max_tokens=max_tokens,
                temperature=temperature
            )
            
            # Clear current request
            self._current_analysis_request_id = None
            
            if success and response_text:
                # Try to parse as JSON
                try:
                    cleaned = response_text.strip()
                    # Look for JSON in response
                    match = re.search(r'\{[^{}]*(?:\{[^{}]*\}[^{}]*)*\}', cleaned, re.DOTALL)
                    if match:
                        parsed = json.loads(match.group(0))
                        return {'status': 'ok', 'data': parsed, 'raw': response_text}
                    else:
                        return {'status': 'ok', 'data': {'raw': response_text}, 'raw': response_text}
                except:
                    return {'status': 'ok', 'data': {'raw': response_text}, 'raw': response_text}
            else:
                print(f"⚠️ Shared model error: {error_message} (will use heuristic analysis)")
                return {'status': 'error', 'message': error_message or 'Generation failed'}
        
        except Exception as e:
            print(f"⚠️ Shared model exception: {e} (will use heuristic analysis)")
            return {'status': 'error', 'message': f'Error: {str(e)}'}
    
    def _heuristic_analysis(self, game_state: Dict, language_code: str) -> Dict[str, Any]:
        """Lightweight, deterministic analysis when LLM is unavailable."""
        from localization import LOCALIZATION
        lang = language_code or "en"
        lang_name = LOCALIZATION.get_ai_language_name(lang)

        player_units = sum(1 for u in game_state.get('units', {}).values() if u.get('player_id') == 0)
        enemy_units = sum(1 for u in game_state.get('units', {}).values() if u.get('player_id') == 1)
        player_buildings = sum(1 for b in game_state.get('buildings', {}).values() if b.get('player_id') == 0)
        enemy_buildings = sum(1 for b in game_state.get('buildings', {}).values() if b.get('player_id') == 1)
        player = game_state.get('players', {}).get(0, {})
        credits = int(player.get('credits', 0) or 0)
        power = int(player.get('power', 0) or 0)
        power_cons = int(player.get('power_consumption', 0) or 0)

        advantage = 'even'
        score = (player_units - enemy_units) + 0.5 * (player_buildings - enemy_buildings)
        if score > 1:
            advantage = 'ahead'
        elif score < -1:
            advantage = 'behind'

        # Localized templates (concise)
        summaries = {
            'en': {
                'ahead': f"{lang_name}: You hold the initiative. Maintain pressure and expand.",
                'even': f"{lang_name}: Battlefield is balanced. Scout and take map control.",
                'behind': f"{lang_name}: You're under pressure. Stabilize and defend key assets.",
            },
            'fr': {
                'ahead': f"{lang_name} : Vous avez l'initiative. Maintenez la pression et étendez-vous.",
                'even': f"{lang_name} : Situation équilibrée. Éclairez et prenez le contrôle de la carte.",
                'behind': f"{lang_name} : Sous pression. Stabilisez et défendez les actifs clés.",
            },
            'zh-TW': {
                'ahead': f"{lang_name}:佔據主動。保持壓力並擴張。",
                'even': f"{lang_name}:局勢均衡。偵察並掌控地圖。",
                'behind': f"{lang_name}:處於劣勢。穩住陣腳並防守關鍵建築。",
            }
        }
        summary = summaries.get(lang, summaries['en'])[advantage]

        tips: List[str] = []
        # Power management tips
        if power_cons > 0 and power < power_cons:
            tips.append({
                'en': 'Build a Power Plant to restore production speed',
                'fr': 'Construisez une centrale pour rétablir la production',
                'zh-TW': '建造發電廠以恢復生產速度'
            }.get(lang, 'Build a Power Plant to restore production speed'))

        # Economy tips
        if credits < 300:
            tips.append({
                'en': 'Protect Harvester and secure more ore',
                'fr': 'Protégez le collecteur et sécurisez plus de minerai',
                'zh-TW': '保護採礦車並確保更多礦石'
            }.get(lang, 'Protect Harvester and secure more ore'))

        # Army composition tips
        if player_buildings > 0:
            if player_units < enemy_units:
                tips.append({
                    'en': 'Train Infantry and add Tanks for frontline',
                    'fr': 'Entraînez de l’infanterie et ajoutez des chars en première ligne',
                    'zh-TW': '訓練步兵並加入坦克作為前線'
                }.get(lang, 'Train Infantry and add Tanks for frontline'))
            else:
                tips.append({
                    'en': 'Scout enemy base and pressure weak flanks',
                    'fr': 'Éclairez la base ennemie et mettez la pression sur les flancs faibles',
                    'zh-TW': '偵察敵方基地並壓制薄弱側翼'
                }.get(lang, 'Scout enemy base and pressure weak flanks'))

        # Defense tip if buildings disadvantage
        if player_buildings < enemy_buildings:
            tips.append({
                'en': 'Fortify around HQ and key production buildings',
                'fr': 'Fortifiez autour du QG et des bâtiments de production',
                'zh-TW': '在總部與生產建築周圍加強防禦'
            }.get(lang, 'Fortify around HQ and key production buildings'))

        # Coach line
        coach = {
            'en': 'Keep your economy safe and strike when you see an opening.',
            'fr': 'Protégez votre économie et frappez dès qu’une ouverture se présente.',
            'zh-TW': '保護經濟,抓住機會果斷出擊。'
        }.get(lang, 'Keep your economy safe and strike when you see an opening.')

        return { 'summary': summary, 'tips': tips[:4] or ['Build more units'], 'coach': coach, 'source': 'heuristic' }

    def summarize_combat_situation(
        self, 
        game_state: Dict, 
        language_code: str = "en"
    ) -> Dict[str, Any]:
        """
        Generate tactical analysis of current battle.
        
        Args:
            game_state: Current game state dictionary
            language_code: Language for response (en, fr, zh-TW)
            
        Returns:
            Dict with keys: summary, tips, coach
        """
        # If LLM is not available, return heuristic result
        if not self.model_available:
            return self._heuristic_analysis(game_state, language_code)
        
        # Import here to avoid circular dependency
        from localization import LOCALIZATION
        
        language_name = LOCALIZATION.get_ai_language_name(language_code)
        
        # Build tactical summary prompt
        player_units = sum(1 for u in game_state.get('units', {}).values() 
                          if u.get('player_id') == 0)
        enemy_units = sum(1 for u in game_state.get('units', {}).values() 
                         if u.get('player_id') == 1)
        player_buildings = sum(1 for b in game_state.get('buildings', {}).values() 
                              if b.get('player_id') == 0)
        enemy_buildings = sum(1 for b in game_state.get('buildings', {}).values() 
                             if b.get('player_id') == 1)
        player_credits = game_state.get('players', {}).get(0, {}).get('credits', 0)
        
        example_summary = LOCALIZATION.get_ai_example_summary(language_code)
        
        prompt = (
            f"You are an expert RTS (Red Alert style) commentator & coach. Return ONLY one <json>...</json> block.\n"
            f"JSON keys: summary (string concise tactical overview), tips (array of 1-4 short imperative build/composition suggestions), coach (1 motivational/adaptive sentence).\n"
            f"No additional keys. No text outside tags. Language: {language_name}.\n"
            f"\n"
            f"Battle state: Player {player_units} units vs Enemy {enemy_units} units. "
            f"Player {player_buildings} buildings vs Enemy {enemy_buildings} buildings. "
            f"Credits: {player_credits}.\n"
            f"\n"
            f"Example JSON:\n"
            f'{{"summary": "{example_summary}", '
            f'"tips": ["Build more tanks", "Defend north base", "Scout enemy position"], '
            f'"coach": "You are doing well; keep pressure on the enemy."}}\n'
            f"\n"
            f"Generate tactical analysis in {language_name}:"
        )
        
        result = self.generate_response(
            prompt=prompt,
            max_tokens=150,  # Reduced from 200 for faster generation
            temperature=0.7
        )
        
        if result.get('status') != 'ok':
            # Fallback to heuristic on error
            return self._heuristic_analysis(game_state, language_code)
        
        data = result.get('data', {})
        
        # Try to extract fields from structured JSON first
        summary = str(data.get('summary') or '').strip()
        tips_raw = data.get('tips') or []
        coach = str(data.get('coach') or '').strip()
        
        # If no structured data, try to parse raw text
        if not summary and 'raw' in data:
            raw_text = str(data.get('raw', '')).strip()
            # Use the first sentence or the whole text as summary
            sentences = raw_text.split('.')
            if sentences:
                summary = sentences[0].strip() + '.'
            else:
                summary = raw_text[:150]  # Max 150 chars
            
            # Try to extract tips from remaining text
            # Look for patterns like "Build X", "Defend Y", etc.
            import re
            tip_patterns = [
                r'Build [^.]+',
                r'Defend [^.]+',
                r'Attack [^.]+',
                r'Scout [^.]+',
                r'Expand [^.]+',
                r'Protect [^.]+',
                r'Train [^.]+',
                r'Produce [^.]+',
            ]
            
            found_tips = []
            for pattern in tip_patterns:
                matches = re.findall(pattern, raw_text, re.IGNORECASE)
                found_tips.extend(matches[:2])  # Max 2 per pattern
            
            if found_tips:
                tips_raw = found_tips[:4]  # Max 4 tips
            
            # Use remaining text as coach message
            if len(sentences) > 1:
                coach = '. '.join(sentences[1:3]).strip()  # 2nd and 3rd sentences
        
        # Validate tips is array
        tips = []
        if isinstance(tips_raw, list):
            for tip in tips_raw:
                if isinstance(tip, str):
                    tips.append(tip.strip())
        
        # Fallbacks
        if not summary or not tips or not coach:
            fallback = self._heuristic_analysis(game_state, language_code)
            summary = summary or fallback['summary']
            tips = tips or fallback['tips']
            coach = coach or fallback['coach']
        
        return {
            'summary': summary,
            'tips': tips[:4],  # Max 4 tips
            'coach': coach,
            'source': 'llm'
        }


# Singleton instance (lazy initialization)
_ai_analyzer_instance: Optional[AIAnalyzer] = None

def get_ai_analyzer() -> AIAnalyzer:
    """Get singleton AI analyzer instance"""
    global _ai_analyzer_instance
    if _ai_analyzer_instance is None:
        _ai_analyzer_instance = AIAnalyzer()
    return _ai_analyzer_instance