File size: 4,752 Bytes
551ad28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
# MCP Integration: Complete Implementation

## Project Status: โœ… COMPLETED

The Model Context Protocol (MCP) integration for the RTS Commander game has been successfully implemented, tested, and documented.

## What We've Built

### 1. Core MCP Server
- **File**: `mcp_server.py`
- **Port**: 8001
- **Framework**: FastAPI-based MCP server using the `mcp` Python package
- **Integration**: Fully integrated with existing game infrastructure

### 2. Game Interaction Tools
Six powerful tools that allow AI agents to interact with the game:

1. **get_game_state()** - Retrieve complete game state as JSON
2. **get_ai_analysis(language)** - Get tactical analysis from built-in AI
3. **move_units(unit_ids, target_x, target_y)** - Move units to positions
4. **attack_unit(attacker_ids, target_id)** - Command attacks on enemies
5. **build_building(building_type, position_x, position_y, player_id)** - Construct structures
6. **send_game_command(command_type, **kwargs)** - Send generic commands

### 3. Information Resources
Two resources providing game documentation:

1. **game_documentation** - Game README documentation
2. **game_rules** - Game architecture and rules

### 4. Startup Scripts
Multiple ways to start the servers:

1. **start.py** - Start main game server (now mentions MCP server)
2. **mcp_server.py** - Start MCP server independently
3. **start_mcp_only.py** - Start only the MCP server for testing
4. **start_with_mcp.py** - Start both servers together

### 5. Comprehensive Testing
Complete test suite ensuring reliability:

1. **test_mcp_server.py** - Basic server functionality tests
2. **test_mcp_integration.py** - Integration tests
3. **test_mcp_comprehensive.py** - Full setup verification
4. **tools/verify_mcp_setup.py** - Setup verification script

### 6. Example Code
Demonstration scripts for developers:

1. **examples/mcp_client_example.py** - Example client usage
2. **examples/mcp_connection_test.py** - Connection testing

### 7. Complete Documentation
Extensive documentation covering all aspects:

1. **docs/MCP_INTEGRATION.md** - Complete integration guide
2. **docs/MCP_IMPLEMENTATION_SUMMARY.md** - Technical implementation details
3. **docs/MCP_USAGE_GUIDE.md** - Usage instructions
4. **docs/FINAL_MCP_INTEGRATION_SUMMARY.md** - Final project summary
5. **examples/README.md** - Examples directory documentation
6. **tests/README.md** - Updated test documentation
7. **docs/PROJECT_FILES_INDEX.txt** - Updated project file index

## Key Features

### โœ… Full Game Integration
- Uses existing `handle_command` method for game actions
- Accesses game state through the global `manager` instance
- Integrates with the existing AI analysis system

### โœ… Standardized Protocol
- Implements the Model Context Protocol standard
- Compatible with any MCP-compatible AI client
- Well-documented API

### โœ… Robust Testing
- Unit tests for all components
- Integration tests for complete functionality
- Verification scripts for deployment

### โœ… Developer-Friendly
- Clear documentation for all components
- Example code for common use cases
- Multiple startup options for different scenarios

## Usage Instructions

### Quick Start
```bash
# Start both servers together
python start_with_mcp.py

# Or start them separately:
# Terminal 1: python start.py
# Terminal 2: python mcp_server.py
```

### Connect an AI Client
Connect any MCP-compatible client to `localhost:8001`.

### Example AI Commands
```json
{
  "tool": "get_game_state"
}
```

```json
{
  "tool": "move_units",
  "arguments": {
    "unit_ids": ["unit1", "unit2"],
    "target_x": 100,
    "target_y": 200
  }
}
```

## Technical Details

### Architecture
- Separate server process for security isolation
- Reuse of existing game infrastructure
- Standardized protocol for maximum compatibility
- Extensible design for future enhancements

### Security
- Separate port (8001) from main game server (7860)
- Isolation of AI access from player connections
- Foundation for future authentication and rate limiting

### Performance
- Lightweight FastAPI implementation
- Efficient game state access
- Minimal overhead on main game server

## Verification

All components have been verified to work correctly:

โœ… File structure complete
โœ… Requirements properly configured
โœ… Imports working
โœ… Server creation successful
โœ… Tools registered
โœ… Resources registered
โœ… Example scripts functional
โœ… All tests passing

## Conclusion

The MCP integration is production-ready and provides a robust foundation for AI agents to interact with the RTS Commander game. The implementation follows best practices for security, performance, and maintainability while providing comprehensive functionality through the standardized Model Context Protocol.